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ABSTRACT: After a review of the class of discrete latent variable models in terms of
formulation and estimation methods, recent advances and perspectives regarding these
models are illustrated. We consider in detail the stochastic block model for social net-
works and models for spatio-temporal data. Among these developments, we discuss,
in particular, the analysis of longitudinal compositional data about expenditures of the
Spanish regions over several decades.
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1 Introduction

In general terms, latent variable models include variables not directly observ-
able to describe the relation between observable variables. Among these mod-
els, those based on the assumption that the latent variables follow a discrete
distribution, namely discrete latent variable (DLV) models, are nowadays com-
monly used (for a recent review, see Bartolucci et al., 2022). With respect to
models based on continuous latent variables, DLV models present some ad-
vantages, such as the flexibility and capability of clustering units in different
latent groups, also named components, classes, or states. Obviously, there are
also issues that may complicate the use of DLV models such as the selection of
the number of support points of the discrete distribution of the latent variables
and the multimodality of the likelihood function.

The first aim of this work is to provide a critical review of DLV models
in terms of formulation and estimation methods. Regarding the first aspect,
we describe recent proposals that can be used to deal with complex data struc-



tures such as social networks and spatio-temporal data. In particular, for the
analysis of social networks we consider the stochastic block model and its ex-
tended versions that may be used in a longitudinal context where individuals
are repeatedly observed in terms of social behavior. For the analysis of spatio-
temporal data, we illustrate models based on latent variables which are specific
to each site and time of observation. We also consider recent formulations
which may be used to make causal inference on a certain policy or treatment
and that conceive potential versions of the latent variables to properly define
causal effects (Lanza et al., 2013).

Regarding estimation, we show that both frequentist and Bayesian infer-
ential approaches rely either on methods that directly assign the units to the
different components or methods in which this explicit assignment is avoided.
Among the methods of the first type, it is worth recalling those based on the
maximization, with respect to the model parameters and the assignment of
units to the components, of the so-called classification likelihood and the cor-
responding Bayesian methods based on Markov chain Monte Carlo (MCMC)
algorithms (Gelman et al., 2011) with data augmentation, where the latent vari-
ables are considered on the same footing as the model parameters. Estimation
methods of the second type are instead based on popular algorithms such as
the expectation-maximization (EM Dempster et al., 1977) applied to find the
maximum likelihood estimate of the parameters and corresponding MCMC al-
gorithms for Bayesian inference. We also describe variational methods (see,
among others, Daudin et al., 2008), used for complex contexts, and in general
we pay attention to the problem of scalability (Bartolucci et al., 2018).

The second aim of the present work is to illustrate a new possible applica-
tion of the DLV models to the analysis of temporal and spatio-temporal com-
positional data, as is briefly described in the following section.

2 Analysis of spatio-temporal compositional data

This development is motivated by the availability of a recent dataset about
the composition of the annual investments in different sectors of the Spanish
economy, for a long period that goes from 1964 to 2020 (Garcı́a et al., 2023).
In the present work we concentrate mainly on the simpler problem of the na-
tional data on the temporal scale, mentioning later how to broaden this to the
more detailed spatio-temporal scale across the different autonomous regions of
Spain. The data are thus collected in the m×1 vectors yt , t = 1, . . . ,T , where
T is the number of time occasions and m the number of sectors. For the spatio-
temporal framework, the data would be in vectors yit , i = 1, . . . ,n, t = 1, . . . ,T ,



where n is the number of regions. The changing total amount invested across
the years is, of course, important to analyze, but here it is the changing compo-
sition of the investments that is of interest, namely the amounts invested each
year relative to their respective totals. Hence, compositional data are such that
the sum of the elements of each compositional response vector is fixed at 1
or 100% (see Greenacre, 2021, for a recent review). This has crucial impli-
cations in terms of data analysis. Two approaches are presented here: first,
an exploratory approach where the logratio transformation is used (Greenacre,
2018); and second, where the data are assumed to follow the Dirichlet distribu-
tion on the unit interval. For the logratio approach the simplest transformation
is the so-called additive logratio transformation, where all compositional parts
are expressed as a ratio with a fixed part, and then log-transformed. These
transformed data can then be analyzed using existing approaches for multi-
variate interval-scale data, assuming multivariate normal distribution.

For the regional data at hand we formulate different models. The starting
one is of hidden Markov type and does not account for the spatial dependence
between the regions. It only accounts for temporal dependence. For every re-
gion, this model assumes that each time-specific vector of response variables
yit , corresponding to parts of the composition, follows a Dirichlet distribution
with parameters that depend on an underlying discrete latent variable. In sym-
bols, we have

Yit |Uit = u ∼ Dir(αααu),

where Uit is the underlying latent variable having support {1, . . . ,k} and αααu is
the state-specific vector of parameters.

Moreover, each sequence of latent variables Ui1, . . . ,UiT follows a Markov
chain with initial probabilities and transition probabilities that, without co-
variates, are denoted by λu = p(Ui1 = u) and πu|ū = p(Uit = u|Ui,t−1 = ū),
t = 2, . . . ,T . With unit-specific covariates, these probabilities are formulated
by suitable logit parametrizations based on regression coefficients to account
for the effect of such covariates. This formulation is based on the usual as-
sumption that the response variables are conditionally independent given the
latent variables. Regarding the parametrization of the Dirichlet distribution,
we follow an approach that separates the effects of the latent states on the ex-
pected value and on the variance (see also Maier, 2014).

We also consider a spatio-temporal model where, following recent ap-
proaches (e.g., Bartolucci & Farcomeni, 2022), the latent state of a region in a
certain year may depend, not only on the previous state, but also on the state of
the neighbor regions. More precisely, each latent variable Uit is modeled con-
ditionally on Ui,t−1 and U jt , j ∈ Ni, where Ni is the set of neighbors of region



i. Even in this case, multinomial logit parametrizations are adopted to include
the effect of possible covariates. Again, we rely on the assumption of con-
ditional independence between the response vectors given the latent variables
that has an interesting interpretation and simplifies the estimation process.
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