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ABSTRACT: This paper presents the generalized Hausman test to detect non-normality
of the latent variable distribution in unidimensional Item Response Theory (IRT)
models for binary data. The test is based on the estimators resulting from the two-
parameter IRT model, that assumes normality of the latent variable, and the semi-
nonparametric IRT model, that assumes a more flexible latent variable distribution.
The performance of the test is evaluated through a simulation study, including the
cases where the latent variable is generated from a skew-normal and mixture of nor-
mals. The results highlight the good performance of the test when the latent variable
is generated from a mixture of normals and from a skew-normal only with many items
and large sample sizes.
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1 Introduction

In unidimensional IRT models for binary data, the latent variable is typically
assumed standard normally distributed. However, assuming normality in the
model when the true latent variable distribution has a different shape than the
normal one can result in large biases in parameter estimates (Ma & Genton,
2010). IRT models that assume different form of the latent variable have been
proposed (for example Irincheeva et al., 2012) but detecting latent variable
non-normality through a statistical test remains an open issue. In this paper,
we consider the generalized Hausman (GH) test (White, 1982) to detect non-
normality of the latent variable distribution in unidimensional IRT models for



binary data. The test is based on the maximum pairwise likelihood (PL) es-
timator (Lindsay, 1988) of the classical unidimensional IRT model for binary
data, based on the normality assumption of the latent variable, and the quasi-
maximum likelihood (ML) estimator of the unidimensional seminonparamet-
ric (SNP)-IRT model for binary data, that assumes a more flexible latent vari-
able distribution (Irincheeva et al., 2012). Some preliminary results on the
performance of the GH test have been presented in Guastadisegni et al. (forth-
coming). In details, the GH test has shown a good performance in terms of
Type I error rates with many items and large sample size. The power of this
test has only been evaluated when the latent variable is generated from a mix-
ture of normals. In this paper, we evaluate the performance of the GH test also
when the latent variable is generated from a skew-normal distribution.

2 The IRT models for binary data

Let y1, ...,yp denote a set of observed binary variables/items, n the number of
individuals and z the latent variable with density function h(z). The response
probability for the i-th individual to the j-th item is modelled using a logistic
model (measurement model)

P(yi j = 1|zi) = πi j(zi) =
exp(α0 j +α1 jzi)

1+ exp(α0 j +α1 jzi)
, (1)

where α0 j is the item intercept and α1 j the item slope. For the classical IRT
model, h(z) = φ(z), where φ(z) is the density of a standard normal. For the
SNP-IRT model, the latent variable has the following SNP parametrization
(Irincheeva et al., 2012)

h(zi) = P2
L(zi)φ(zi) PL(zi) = ∑

0≤l≤L
aizl

i. (2)

a0, ...,aL are the real coefficients of the polynomial PL(zi) and L is the poly-
nomial degree. SNP1 denotes the model for L = 1, where PL(z) = a0 + a1z,
a0 = sinϕ1, a1 = cosϕ1, −π/2 < ϕ1 ≤ π/2. SNP0 denotes the model for L = 0,
where the distribution of the latent variable reduces to the normal one. To im-
plement the GHT test, we consider the SNP0 and the SNP1 model.

3 The generalized Hausman test

Consider the maximum PL estimator η̃SNP0
of the SNP0 model, that includes

the item intercepts and slopes of dimension 2p×1, where p is the number of



items. Under normality of the latent variable distribution, the maximum PL
estimator η̃SNP0

converges in probability to the true parameter value η0. Con-
sider also the quasi-ML estimator θ̂

′
SNP1

= (η̂′
SNP1 , ϕ̂1) of the SNP1 model, of

dimension (2p+1)×1. Under normal, multi-modal and asymmetric distribu-
tions of the latent variables and if the regularity conditions A2-A6 of White
(1982) are satisfied, the quasi-ML estimator θ̂

′
SNP1

= (η̂′
SNP1 , ϕ̂1) converges to

θ
′
0∗ = (η′

0,ϕ1∗), where ϕ1∗ is the value of ϕ1 that minimizes the Kullback-
Leibler information criterion. The GH test is defined as

GH = (η̂SNP1
− η̃SNP0

)′Ŝ(η̃SNP0
, θ̂SNP1)

−1(η̂SNP1
− η̃SNP0

). (3)

Details on the computation of the matrix Ŝ(η̃SNP0
, θ̂SNP1) can be found in Guas-

tadisegni at al. (forthcoming). Under normality of the latent variable distri-
bution, the GH test is asymptotically distributed as a χ2

2p, where 2p are the
degrees of freedom. To avoid the inversion of the matrix Ŝ(η̃SNP0

, θ̂SNP1) that
is numerically unstable, we consider the following statistic

GHT = (η̂SNP1
− η̃SNP0

)′(η̂SNP1
− η̃SNP0

). (4)

Under normality of the latent variable distribution, GHT ∼ aχ2
b, where a =

∑
d
l=1 λ2

l

∑
d
l=1 λl

and b =
(∑d

l=1 λl)
2

∑
d
l=1 λ2

l
, d is rank of Ŝ(η̃SNP0

, θ̂SNP1) and λ1, ...,λd are its non-
zero eigenvalues.

4 Simulation study and results

The optimization of the SNP1 model is achieved in R with direct maximization
via the function “nlminb”, that uses analytically computed gradient and Hes-
sian matrix, while the SNP0 model via the function “optim”. We consider the
following simulation conditions: number of items (p = 4,10,20), sample size
(n = 500,1000), 500 replications for each condition and α = 0.05. Data are
generated from a 2-PL model with the following latent variable distributions:

A z ∼ N(0,1)
B z ∼ 0.7N(−1.5,0.6)+0.3N(1.5,0.5), where z has an overall mean equal

to -0.6 and variance equal to 2.217.
C z∼ SN(µ= 0,σ= 2.5,λ= 10), where z has mean 1.98 and variance 2.31.

Table 1 presents Type I error rates and power of the GHT test for scenarios A, B
and C. Overall, under scenario A, the GHT test has good performance in terms



Table 1. Type I error rates and power of the GHT test for scenarios A, B, and C,
p = 4,10,20, n = 500,1000.

Type I error Power
p n A B C
4 500 0.016 0.796 0.03

1000 0.086 0.92 0.234
10 500 0.018 1 0.388

1000 0.044 1 0.59
20 500 0.056 0.986 0.744

1000 0.06 1 0.918

of Type I error rates when the sample size is large and in general with many
items. Under scenario B, the power of the GHT test is high for most conditions.
However, under scenario C, 4 and 10 items, the GHT test has low power to
detect non-normality of the latent variable distribution. It reaches a high power
only with 20 items and large sample sizes. The low power of the test under
scenario C can be due to the following reasons. First, the SNP1 model does not
approximate very well the skew-normal distributions (Irincheeva et al., 2012).
Second, the skew-normal distribution used in the simulations has a very high
mean and this has a negative impact on the estimation of parameters.
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