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ABSTRACT: Modelling noisy data in a network context remains an unavoidable ob-
stacle; fortunately, random matrix theory may comprehensively describe network en-
vironments effectively. Thus it necessitates the probabilistic characterisation of these
networks (and accompanying noisy data) using matrix variate models. Denoising net-
work data using a Bayes approach is not common in surveyed literature. Thus we
briefly introduce a new matrix-variate t model in a prior sense for the noise process
following the Gaussian graphical network, for the cases when the assumption of nor-
mality is violated in the model and cases when Gaussian distributions is no longer
sufficient to explain variation in the data. We investigate the performance of this
matrix-variate t distribution applied to a network setting within a Bayesian context.
Calculation and approximation of the resulting posterior are of interest to assess the
considered model’s network centrality measures, which is illustrated using real-life
stock price data.
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1 Introduction

Let Gt be a sequence of directed networks for t = 1, . . . ,T for T ∈ N. Assume
that the number of nodes do not change with respect to t, but the number
of edges can. Assume that each of the nodes bears a stationary time series of
variables that estimates a sequence of networks Gt at time t. Then an adjacency
matrix is estimated for Gt at each time index t, say YYY t . A stationary time series
implies that network structure itself at time t is nothing more than a deviation
from an underlying adjacency matrix BBB independent of time t. In other words,
the true graphical network structure is stationary. YYY t is thus viewed as ’noisy



copy’ of BBB given by:

YYY t = BBB+EEEt for t = 1, . . . ,T. (1)

EEEt : n× n is a random error term, independent and identically distributed for
all t = 1, . . . ,T . The matrix-variate Gaussian distribution is fundamental for
inference, but is sometimes inadequate for modelling populations where the
matrix variate-t distribution may be a better fit. There is extensive literature
around a multivariate Gaussian distribution of errors. Articles that date back as
early as the classical linear models (Arnold, 1979) to relatively recent ones on
engineering processes (Amiri et al., 2018), with recent contributions including
the work by Billio et al., 2021. Instead, a t distribution seems a suitable choice
to characterise error. Thus, consider EEEt as matrix-variate t distributed with
corresponding probability density function (pdf), then EEEt ∼ tn,n(000,ΣΣΣ1,ΣΣΣ2) and
the pdf of EEEt is given by,
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where Γn(·) is the multivariate gamma function. By the linearity property of
a matrix-variate t distribution, (1) implies that YYY t ∼ tn,n(ν,BBB,ΣΣΣ1,ΣΣΣ2) and is
consequently called the matrix-variate t model. Since BBB,ΣΣΣ1,ΣΣΣ2 and ν are un-
known, they must be estimated. Bayesian methodology for estimating the un-
known parameters is followed and implementing the matrix-variate Gamma
and inverse matrix-variate Gamma as priors for ΣΣΣ1 and ΣΣΣ2 respectively, and
a new graphical t-model as a result. Applying the methodology reveals a
clear discrepancy between estimates from raw data and the Bayesian approach,
which highlights the misleading impact that noise in data has and how it may
lead to more grave consequences for any analysis built upon said noise.

2 A new graphical t-model construction

Assume that the prior density functions are mutually independent. The joint
pdf π(BBB,ΣΣΣ1,ΣΣΣ2,γ,ν) is then proportional to :
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where f (ΣΣΣ1|γ), f (ΣΣΣ2|γ) are some conditional prior pdfs of ΣΣΣ1 and ΣΣΣ2, respec-
tively. It follows BBB,ΣΣΣ1,ΣΣΣ2,γ,ν has likelihood function equal to:
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From (3) and (4) the posterior pdf follows as
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× f (ΣΣΣ1|γ) f (ΣΣΣ2|γ). (5)

For this paper, consider the matrix-variate and inverse matrix-variate Gamma
distributions, i.e., ΣΣΣ1 ∼ MGn(δ1,β,(γΦΦΦ1)

−1) and ΣΣΣ2 ∼ IMGn(δ2,β,(γΦΦΦ2)
−1)

as priors. Notice that the scalar shape parameter β can be fixed, or have a
prior imposed on it also. Either way the estimation procedure unaffected. As
is usual with Bayesian estimation, an observed matrix BBBi from the posterior
distribution is an estimate of the true adjacency matrix BBB - thus, the average of
a sample estimates BBB. To simulated a sample, the Gibbs sampling algorithm is
used.

3 Application and evaluation

The methodology is applied to the weekly stock prices of 70 European firms,
resulting in 105 observations. Granger causality hypothesis tests are applied
pairwise for week t. The resulting test statistics belong in a matrix that is an
observed YYY t *. We employ well-known centrality measures, such as a graph’s
degree, closeness, eigen centrality, and betweenness, to evaluate a matrix vari-
ate estimator. These measures are univariate scores that measure a node’s in-
fluence in a graph.

The results from the application are shown in Figure 1†. It is observed that
there are clear discrepancies between the different estimators, with particular

*Data provided by Prof. M. Billio, University of Venice, Italy.
†The simulations were run on MATLAB R2022b on University of Pretoria server with

501Gb of RAM and 48 cores. Runtime for simulations was 16h excluding time to compute
Granger causality test statistics.



Figure 1: Estimated centrality measures: The solid red line and dashed black
lines represent the averages of the raw data, and methodology respectively.

attention to the out-degree, out-closeness, and eigencentrality. The raw data
seems to underestimate the centrality measures. In other words, the discrepan-
cies highlight how noise left in data may jeopardise the validity and reliability
of analysis built on data.
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