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ABSTRACT: The dynamic stochastic blockmodel is commonly used to analyze lon-
gitudinal network data when multiple snapshots are observed over time. The vari-
ational expectation-maximization (VEM) algorithm is typically employed for maxi-
mum likelihood inference to allocate nodes to groups dynamically. To address the
problem of multiple local maxima, which may arise in this context, we propose modi-
fying the VEM according to an evolutionary algorithm to explore the whole parameter
space. A simulation study on dynamic networks and an application illustrate the pro-
posal comparing the performance with that of the VEM algorithm.

KEYWORDS: local maxima, longitudinal networks, node classification, stochastic
blockmodel, variational expectation-maximization algorithm.

1 Introduction

The dynamic stochastic blockmodel (Matias & Miele, 2017) extends the sto-
chastic blockmodel (SB, Nowicki & Snijders, 2001) for the analysis of lon-
gitudinal network data when multiple snapshots are observed over time. This
model aims to identify homogeneous blocks of nodes and to analyze interac-
tions between nodes and their evolution. At each time occasion, nodes are
partitioned into a set of groups whose number is estimated; the probability of
observing an edge between a couple of nodes depends on the assigned groups.

In the inferential context, the variational expectation-maximization (VEM,
Jordan et al., 1999) algorithm has been proposed for maximum likelihood esti-
mation. However, a drawback of this method is that it can be trapped in one of
the multiple local maxima. To account for this problem we propose a modified
version of the VEM through an evolutionary algorithm (EA, Ashlock, 2004).
We perform a Monte Carlo simulation study to evaluate the performance of the
proposed evolutionary VEM (EVEM) algorithm in avoiding local maxima and
improving the accuracy of the posterior classification. We also show an ap-
plication estimating the dynamic SB with data related to face-to-face contacts
between employees to investigate transmission of an infectious disease.



2 Notation and inference in dynamic stochastic blockmodel

Considering n nodes observed at T discrete times, let Y denote an adjacency
array of dimensions n× n× T , where Y(t) is the adjacency matrix at time t
and Y (t)

i j = 1 if there is an edge between nodes i and j (symmetric association)

at time t and Y (t)
i j = 0 otherwise (i, j = 1, . . . ,n, i ̸= j). The dynamic SB as-

sumes that block membership depends on a set of independent and identically
distributed discrete latent variables Z(t)

i following a Markov chain with k sup-
port points. In this way, each node is partitioned into one of k latent blocks at
every time occasion according to the initial and the transition probabilities de-
noted as αu and πuv, u,v = 1, . . . ,k, respectively. Under the local independence
assumption and conditionally on the latent blocks to which nodes i and j be-
long at time t, the variables Y (t)

i j are assumed to be independent and Bernoulli
distributed with connection probabilities denoted as βuv.

For maximum likelihood inference of SB the VEM was proposed in Ma-
tias & Miele, 2017 to maximize a lower bound of the log-likelihood function
denoted as J (θ), where θ collects the model parameters. More recently, Bar-
tolucci & Pandolfi, 2020, proposed an exact formulation of the VEM algorithm
to improve clustering units across time occasions. They initialize the starting
values for the model parameters through the k-means method since random ini-
tialization is usually ineffective in this context. However, this approach does
not prevent the VEM algorithm from being trapped in the local maxima that
frequently arise with complex data structures.

3 Proposed evolutionary VEM algorithm

The proposed EVEM algorithm is defined by the following features: (i) an ini-
tial “population” denoted as P0 of N candidate solutions for the maximization
problem at issue, here specified as possible arrays of cluster memberships; (ii)
a mutation operator that introduces variations to the existing candidates and
generates new solutions by randomly selecting an observation and providing
an updated cluster membership; (iii) selection of the best solutions based on a
quality measure that favors candidates with higher values of J (θ).

In order to explore the whole parameter space the first candidate for pop-
ulation P0 is obtained according to the k-means deterministic initialization; in
particular, the adjacency matrices Y(t) for t = 1, . . . ,T are row-concatenated
together, and the k-means algorithm is applied on the rows of the resulting
nT × n matrix. Then, the remaining N − 1 candidates are obtained through



mutation. The procedure alternates the following steps until convergence:

1. P1 ← Update(P0): perform a small number of iterations of the VEM
algorithm on each individual of population P0.

2. P2 ←Mutate(P1): add variation in each individual of population P1 to
encourage a broader exploration of the parameter space.

3. P3 ← Update(P2): perform a small number of iterations of the VEM
algorithm on each individual of population P2.

4. P4 ← Select(P1 ∪P3): consider individuals of both populations P1 and
P3, and retain the N showing the highest value of J (θ) for the next gen-
eration.

Convergence is assessed considering the best solution of population P4, ana-
lyzing the relative difference of J (θ) at two consecutive steps and that between
the corresponding parameter vectors.

4 Simulation study and application

In analogy with the design used in Bartolucci & Pandolfi, 2020, a Monte Carlo
simulation study is conducted, varying the number of nodes (n = 20,50), the
number of latent blocks (k = 2,3), the block persistence (high or low), and
the connectivity parameters (intra-group greater or smaller than inter-group).
For each of the 16 resulting scenarios, we randomly draw 50 networks and
estimate the dynamic SB with both the VEM and the EVEM algorithms. The
effectiveness of the proposed approach is evaluated in terms of the Adjusted
Rand Index (ARI, Hubert & Arabie, 1985) between the true and the estimated
classification at each time occasion.

Simulation results show that the EVEM algorithm outperforms the exist-
ing VEM algorithm in most scenarios, especially those with higher complexity.
For example, considering a scenario characterized by 50 nodes, 3 latent blocks,
low persistence of latent states, and higher intra-group than inter-groups con-
nection probabilities, the ARI equals 0.688 using the VEM algorithm and
0.761 with the EVEM algorithm. In another scenario, with the same features
but opposite connectivity parameter setting, ARI is 0.707 with VEM and 0.784
with the EVEM. In both cases, the improvements are statistically significant.
When using the EVEM algorithm, we also observe a decrease of the mean
squared error between the estimated and true model parameters, computed as
an aggregated measure over all the model parameters.

Real data refer to face-to-face contacts between n = 90 employees in a
building of the Institut de veille sanitaire (French Institute for Public Health



Surveillance) for ten working days (T = 10), from June 24 to July 3, 2013
(data are available at the website: http://www.sociopatterns.org/
datasets/contacts-in-a-workplace/). The building hosts three
scientific departments (“DISQ”, “DMCT”, and “DES”), logistics (“SFLE”)
and human resources (“SRH”). The adjacency array is built by setting each
element Y (t)

i j equal to 1 if at least one face-to-face contact was registered be-
tween employees i and j at time t, and 0 otherwise.

A dynamic SB with 5 latent blocks is estimated using both VEM and
EVEM algorithms. The resulting classification of employees helps understand
how a certain infectious disease may spread across different departments of
the same building. We observe that the value of J (θ̂) at convergence increases
from −2613 to −2600 when the EVEM algorithm is employed. This is re-
flected in a more accurate classification of the employees in each group of the
network. The EVEM algorithm identifies a specific latent block for employees
from the “DISQ” department, while the VEM algorithm allocates them with
employees from the “DMCT” department. Additionally, the EVEM algorithm
correctly assigns all employees from the “DSE” department to a single latent
block, whereas the VEM algorithm splits them into two distinct blocks.
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