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ABSTRACT: Markov switching autoregressive models (MSARMs) are proposed here
in order to tackle the non-linearity, non-Normality, non-stationarity, and long memory
of time series in hydrology. Bayesian inference, model choice, and stochastic vari-
able selection are performed numerically by Markov chain Monte Carlo algorithms.
Hence, it is possible to efficiently fit the data, reconstruct the sequence of hidden
states, restore the missing values, classify the observations into a few regimes, and
select the covariates. The efficiency of MSARMs is demonstrated by applications to
isotope signatures, turbidity measurements, and river temperature. Our proposal is
very general and flexible and can be applied to any kind of environmental time series.
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1 Introduction and Data

Hydrological time series are realisations of complex stochastic systems. A few
issues need to be taken into account by the modellers: non-Normality, non-
linearity, non-stationarity, and long memory. These issues can be analysed
by Markov switching autoregressive models (MSARMs): a class of models
that is a popular tool within the econometrics community to model complex
time series but has been considered quite rarely in other disciplines, includ-
ing environmental sciences. Among the few applications in hydrology, Birkel
et al. (2012) modelled isotope signatures; Spezia et al. (2021) turbidity mea-
surements and Spezia et al. (2023) water temperature. In this work, we investi-
gate the dynamic variability of water temperature by analysing an hourly water
temperature time series automatically recorded in the Gairn catchment, in the
North-East of Scotland, for more than five years, along with some covariates
affecting both the latent process (i.e. the time-varying transition probabilities



of the hidden Markov chain) and the observed process. The water tempera-
tures is recorded hourly from 16th August 2012 to 23rd November 2017; the
length of the series is 46224 points (i.e. 1926 days; more than five years), with
328 missing values (0.71% of the total number of observations). The range
of the series is between -0.02◦C and 22.41◦C. The contemporary series of the
hourly river flows is also available. We also studied an intermediate series of
water temperature from 13th June 2014 to 31st August 2016 (19440 observa-
tions; 810 days; more than two years) with 209 missing values (1.08%) along
with three covariates (flow, air temperature, rainfall). Finally, a short series
was considered: 1200 observations (50 days) with no missing values recorded
from 18th August to 6th October 2012 along with seven covariates (flow, air
temperature, rainfall, wind speed, wind direction, radiation, soil temperature).
The length of series of the exogenous variables was limited by the need to not
have missing values in these deterministic sequences. This because missing
values within the covariates might bias the results of our analyses.

We propose MSARMs within the Bayesian framework: inference, model
choice, and variable selection are performed numerically by Markov chain
Monte Carlo (MCMC) algorithms.

2 Model and Inference

MSARMs are pairs of discrete-time stochastic processes, one observed and
one latent, or hidden. The hidden process is a finite-state Markov chain,
whereas the observed process, given the Markov chain, is conditionally au-
toregressive. The dynamics of the observed process is driven by the dynamics
of the latent one, so that each observation depends on the contemporary state
of the Markov chain. By this theoretical structure, MSARMs allow: i) mod-
elling non-linear and non-Normal time series by assuming that different au-
toregressions, each one depending on a hidden state, alternate according to the
Markovian regime switching; ii) modelling a long-memory process; iii) clas-
sifying the observations into a small number of homogeneous groups, labelled
as the regimes of the Markov chain.

Seven covariates were also incorporated into the model through both the
hidden Markov chain (the transition probabilities are time-varying and depen-
dent on the dynamics of these exogenous variables) and the observed process
(the state-dependent exogenous variables are added to the past observations).
Thus, we have time-varying means and autocovariances, and hence, a non-
stationary model. The covariates are: river flow, air temperature, rainfall, wind
speed, wind direction, radiation, and soil temperature. The data set is also



characterised by periodicities: the hourly temperatures vary according to the
dynamics of the year and of the 24 hours of the day. Hence, both an annual
and a state-dependent daily harmonic component are added to the observed
process.

In the Bayesian framework, inference, model choice, and variable selec-
tion are performed numerically by MCMC algorithms. The basic scheme for
parameter estimation in the observed process is Gibbs sampling which also
allows both restoration of the missing values occurring within the series of
observations and reconstruction of the sequence of hidden states. Two ran-
dom walk Metropolis moves are used to estimate the parameters of the hid-
den Markov chain. Adding extra-steps to the basic Metropolis-within-Gibbs
scheme we can also compute the marginal likelihood of the various compet-
ing models through the MCMC sample. This procedure enables us to select
the best model within a set of models varying for the number of hidden states
and the order of the autoregressive processes. The exogenous, deterministic
variables appearing in the observed process may be different in any state and
they may be different from those affecting the transition probabilities. The
transition matrix is affected by two sets of covariates (possibly different from
each other and different from those in the observed process), one for the tran-
sitions from a lower to a higher state, and another for the transition from a
higher to a lower state. The selection of the covariates appearing in each state-
dependent autoregression and in the transition matrix is performed stochasti-
cally through the Metropolised-Kuo-MallicK (MKMK) method, proposed by
Paroli and Spezia (2008). In the case of non-homogeneous hidden Markov
models and MSARMs with covariates, the MKMK method improves the per-
formance of the competing techniques, especially when the explanatory vari-
ables are strongly correlated, and/or when the complexity of the model is high.

3 Results

The flexibility of the MSARMs is demonstrated by the three applications we
considered. For the whole series with a single covariate, the best model has
three hidden states and autoregressions of the fifth order. Thus, the non-linear
model (three hidden states) worked better than the corresponding linear model
(no hidden states). Flow is relevant in the observed process for two states only,
while it is not selected in the hidden process and the Markov chain is homo-
geneous. For the intermediate series with three covariates, the best model has
three hidden states and autoregressions of the sixth order. Again, the non-
linear model (three hidden states) works better than the corresponding linear



model (no hidden states). Flow is relevant in the observed process for one
state only, while air temperature is always selected both in the observed and
the hidden process. For the short series with seven covariates, we obtain that
the best model is the linear autoregression of the sixth order, with no hidden
Markov chain behind. Air temperature, solar radiation, and soil temperature
are the relevant variables to explain the water temperature dynamics. Thus,
discharge is a proxy for water temperature modelling, when no other more di-
rectly related variables are available. In those situations, the latent states will
help to model the long-term dynamics, in the absence of true predictors with a
physical meaning. As we saw in the first two applications, the hidden regimes
can have an interpretation related to the seasonality. In fact, the Markov chain
shows an annual dynamics which anticipates the annual dynamics of the wa-
ter temperatures. It is not surprising that for the short series (50 days, i.e. no
annual periodicity) the model is not multi-state. It would be interesting to see
what happens when considering the seven covariates on longer series, that is
if the same covariates are selected in a non-linear model (i.e., with a multi-
state hidden Markov chain). Our study provides a novel application of the
suitability of the MSARMs in hydrological time series analysis and environ-
mental sciences in general. We hope our work can motivate other scientists
to approach MSARMs and give their highly structured time series a valuable
interpretation.
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