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ABSTRACT: Thickness of pyroclastic deposits governs various geomorphological and 
hydrological processes, but studies on the areas characterized by pyroclastic soil 
coverage are limited in the literature worldwide and the existing models predict 
thickness mainly based on morphological features of the slope. In this paper, additional 
variables are also derived from Digital Elevation Model (DEM) and satellite 
multispectral images to propose a spatial model for forecasting the thickness of 
pyroclastic deposits. For the prediction model, a two-step procedure is adopted: (1) the 
best subset of variables is selected; and (2) the predictions from different schemes are 
combined for deriving the final model. Predictive accuracy tests verify that the 
combination procedure provides a statistically significant improvement in predictions.  
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1 Introduction 

In an eruptive event, volcanic ash disperses in the atmosphere and deposits on the 
ground surface based on wind speed and direction. Because the geotechnical and 
hydraulic properties of the unconsolidated pyroclastic ash-fall deposits usually differ 
from bedrock, the spatial variation of their thickness significantly influences 
geomorphological and hydrological processes such as landscape evolution, hillslope 
hydrology, erosion, and landslides. Estimating the spatial distribution of thickness of 
pyroclastic ash-fall deposits is challenging because there might be more than one 
eruptive event, changes in wind characteristics during a single eruption can enhance 
complexity of the ash-dispersal pattern, and soil-forming and geomorphological 
processes continuously influence the expected spatial thickness. 



In the literature, estimating thickness was mainly carried out for the areas covered 
by residual regolith (e.g., Saulnier et al., 1997; Saco et al., 2006; Tesfa et al., 2009; 
Segoni et al., 2013) and the approaches developed based on independent variables and 
applied to a specific site or in limited areas had a better performance (Del Soldato et 
al., 2018). There is, however, limited information on the thickness of pyroclastic ash-
fall deposits under the influence of hillslope processes (De Vita et al., 2006). 

Our paper proposes a new approach that considers additional variables for 
modelling and forecasting the thickness of pyroclastic ash-fall deposits. Combining 
the results provides more accurate forecasts, which are validated in terms of field 
measurements and compared with those obtained from three previously developed 
approaches: (1) Slope Angle Pyroclastic Thickness (SAPT; De Vita et al., 2006); (2) 
Geomorphological Pyroclastic Thickness (GPT; Del Soldato et al., 2016); and (3) 
Slope Exponential Pyroclastic Thickness (SEPT; Del Soldato et al., 2018). We apply 
the predictions for the area around Somma-Vesuvius, Phlegrean Fields and 
Roccamonfina volcanoes in southern Italy to evaluate the possibility of mapping 
thickness for a territory with complex geology and geomorphology. 

2 Data and methodology 

The literature on the tephra-producing eruptions of Somma-Vesuvius, Phlegrean 
Fields and Roccamonfina volcanoes was studied to prepare a database and compute 
the distance from eruptive vents along with the cumulative thickness of the ash layer 
deposited on the ground surface. The existing models like SAPT, GEPT and SEPT 
predict thickness mainly on the basis of morphological features of the slope. In this 
paper, we consider additional variables derived from Digital Elevation Model (DEM) 
and LANDSAT satellite multispectral images.  

The following terrain features were then obtained from the DEM (resolution: 
10×10m): altitude, slope degree, slope aspect, curvature, profile curvature, plan 
curvature, flow direction, flow accumulation, stream power index, stream transport 
index and topographic wetness index. Distance from the hydrographic network was 
also computed. The imageries of LANDSAT 8 Operational Land Imager (acquired in 
August 2017 and 2019), Collection 1 Level-1, were finally implemented to obtain four 
additional variables, i.e. Normalized Difference Vegetation Index (NDVI), Modified 
Secondary Soil-Adjusted Vegetation Index (MSAVI2) and Normalized Clay Index 
(NCI) as proposed in the literature. 

Following splitting a dataset of 7000 units (70% for training and 30% for testing), 
a stepwise regression (STPW) is applied to the training dataset for choosing the best 
subset of variables and for estimating the coefficients of the predictive model. Then, 
we use the resulting model for forecasting the thickness in the testing dataset. 

The final forecasting model is obtained by combining the predictions of the GPT 
(𝑦 , ), the SAPT (𝑦 , ), the SEPT (𝑦 , ) and the STPW (𝑦 , ) approaches: 

 
𝑦 = 𝑤  𝑦 , + 𝑤  𝑦 , + 𝑤  𝑦 , + 𝑤  𝑦 ,                             (1) 

 



where 𝑤 , 𝑤 , 𝑤 , 𝑤  are the combination weights. We choose combination weights 
by evaluating the performance of five different schemes in out-of-sample. The first 
one is the Sample Average (SA) combination scheme. The second criterion is the 
Minimum Variance (MV, Hsiao and Wang, 2014): 

 
𝑤: min 𝑤 Σ𝑤                                                    (2) 

 
where 𝑤 = (𝑤 , 𝑤 , 𝑤 , 𝑤 )  refers to the vector of unknown weights and Σ is the 
covariance matrix between forecasts of alternative models. The third scheme 
considers the inverse ranking (InvRank, Ailofi and Timmermann, 2006) of the 
alternative forecasting models in terms of Root Mean Square Error (RMSE): 
 

𝑤 = 𝑅𝑎𝑛𝑘 / ∑ 𝑅𝑎𝑛𝑘                                        (3)  
 

where k=1,2,3,4 is the index associated with the k-th forecasting model and 𝑅𝑎𝑛𝑘  
is the inverse ranking of the models in terms of RMSE. The last two considered 
combination schemes are the Ordinary Least Squares (OLS, Granger and 
Ramanathan, 1989) and the shrinkage approach (Shrink) of Bodnar et al. (2019).  

3 Main results and final remarks 

Tab. 1 shows results of the single forecasting models and the combination 
procedures.  The GPT model is the best approach available in the literature, but the 
stepwise approach provides lower RMSE and MAE values (84.58 and 60.53, 
respectively). It indicates that including additional data derived from DEM and 
satellite imageries improves the accuracy of thickness predictions. 
 

Tab. 1: Forecasting accuracy results 
Category Models RMSE MAE Best performance 

Single Fforecasting 
model GPT 94.21843 62.64876 

 

 SEPT 110.2305 72.32251  
 SAPT 167.8572 141.7064  
 STPW 84.57994 60.52539 * 
Combination procedure SA 91.45242 67.57764  
 MV 84.56758 60.51947  
 InvRank 83.48263 60.24573 * 
 OLS 84.54387 60.45999  
 Shrink 84.56749 60.92980  

 
In the next step, the predictions of single models are combined and it is revealed 

that performance of most combination approaches is better. The Inverse Ranking 
presents the best weighing system because the RMSE and MAE of the predicted 
thickness values are the lowest. Thus, we obtain a more representative pyroclastic 



cover thickness distribution map for the areas affected by natural hazards such as 
landslides and floods. 
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