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ABSTRACT: Machine Learning (ML) models are often used to support classification
decision-making, such as in peer-to-peer lending. However, they usually lack inter-
pretable explanations. While Shapley values and the computationally efficient variant
Kernel SHAP may be employed for this aim, the latter makes the assumption that the
features are independent. We explain classifiers through a Kernel SHAP method able
to handle dependent features in the context of credit risk management for peer-to-peer
lending. We demonstrate the effectiveness of our method by considering linear and
non-linear models with varying degrees of feature dependence, showing that our ap-
proach yields credible estimates of true Shapley values across model and dependence
specifications.
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1 Introduction

Obermeyer & Emanuel, 2016 pointed out that ML model interpretability en-
hances medical, healthcare, credit scoring, and fraud detection. Explaining
complex ML model predictions is a challenging task, and the model’s ex-
planation is crucial for both reliability of the estimates and for fairness and
compliance with respect to General Data Protection Regulation compliance.
Peer-to-peer lending requires creditworthiness, namely transparent and trust-
worthy explanations to build trust and help lenders and borrowers make well-
informed choices. Credit risk analysis determines peer-to-peer lending rates
and creditworthiness, and lenders may distrust complicated ML model predic-
tions. Explainable Artificial Intelligence (XAI) improves classification accu-
racy, model transparency and interpretability via the concept of game-theoretic



Shapley values. Recent model-agnostic explanation methods simplify under-
standing of how each predictor affects the prediction; in particular, Aas et al.,
2021 expand Kernel SHAP to address interdependent characteristics. We ex-
ploit such formulation of Kernel SHAP to build predictive classification ML
models and relative model explanations for interpretable peer-to-peer credit
risk management. We test our proposal on three predictive ML models, i.e. lo-
gistic regression, GAMs, XGBoost, and four structures for modelling feature
dependence, i.e. the independent case, Gaussian, empirical distribution and
copula. This study reveals that linear and non-linear models with variable fea-
ture dependencies give consistent and reliable Shapley value estimates. This
enhances the understanding of the drivers of peer-to-peer lending credit risk
and outlines best practices for its management via machine learning classifica-
tion techniques.

2 Kernel SHAP for dependent features

Kernel SHAP computes feature importance using weighted linear regression
and local linear regression coefficients. In classical machine learning, a pre-
dictive model, f (x), is trained using a training set of size ntrain comprised
of sets y

{
yi,xi

}
i=1,...,ntrain

where j = 1, . . . ,ntrain. This model attempts to
closely approximate the response value y. To explain the prediction f (x∗) for
a particular feature vector x = x∗, the Kernel SHAP technique only uses the
independence assumption p(xS̄ | xS ) = p(xS̄) - see Aas et al., 2021.

We examine how the three different ways of accounting for dependence
structures in the features increase ML credit risk model accuracy and feature
explainability compared to independence.

2.1 Multivariate Gaussian distribution

Given that the feature vector x is obtained from a multivariate Gaussian dis-
tribution with mean vector µ and covariance matrix Σ, then the conditional
distribution p

(
xS | xS = x∗S

)
is also multivariate Gaussian. By expressing p(x)

in terms of p(x) = p(xS ,xS ) = NM(µ,Σ) with µ = (µS ,µS )
⊤ and

Σ =

[
ΣSS ΣSS
ΣSS ΣS̄S̄

]
gives p

(
xS |S = x∗S

)
= N|S

(
µS |S ,ΣS |S

)
, with

µS̄|S = µS̄ +ΣS̄SΣ
−1
SS (x∗S −µS )



and
ΣS̄|S = ΣS̄S̄ −ΣS̄SΣ

−1
SS ΣSS̄

2.2 Gaussian Copula

A d-dimensional copula is a multivariate distribution, C, characterized by uni-
formly distributed marginal probabilities U(0,1) over the unit interval of [0,1].
Sklar’s theorem states that for each multivariate distribution F with univariate
distributions F1,F2, . . . ,Fd can be written as

F (x1, . . . ,xd) =C (F1 (x1) ,F2 (x2) , . . . ,Fd (xd)) ,

for some appropriate d-dimensional copula C. In fact, the copula from (12)
has the expression

C (u1, . . . ,ud) = F
(
F−1

1 (u1) ,F−1
2 (u2) , . . . ,F−1

d (ud)
)

where the F−1
j s are the inverse distribution functions of the marginals. As-

suming a Gaussian copula, the following methodology can be employed to
generate samples from p

(
xS | xS = x∗S

)
.

2.3 Empirical conditional distribution

We propose a non-parametric method if x’s dependence structure and marginal
distributions depart from the Gaussian. The kernel estimator, a classical non-
parametric density estimation method, has been modified and improved over
the decades. The kernel estimator is impeded by the curse of dimensional-
ity, which rapidly restricts its applicability in multivariate problems. Addition-
ally, the non-parametric estimation of conditional densities is limited to a small
number of techniques, particularly when either xS or xS is not one-dimensional.
Ultimately, most kernel estimation methods generate a non-parametric density
estimate, however, samples from the estimated distribution must be produced.
Consequently, we have formulated an empirical conditional method to approx-
imately sample from p

(
xS | x∗S

)
.

3 Empirical Findings

We compare accuracy and prediction explanations from different ML mod-
els and feature dependence settings on four predictive models using the sug-
gested technique. Logistic regression and three more complex predictive mod-
els—GAMs, RF, and XGBoost—are chosen. Lending Club (LC) has 2260701



Figure 1. Distribution of Shapley values from random subsampling for each variable,
model and feature dependence structure.

observations on individual borrowers and their requested loans from 2007 to
the fourth quarter of 2018. In this study, we preprocess data and keep 14 vari-
ables to analyze the impact of dependencies on the explanations produced by
the different ML models. We perform test data random sub-sampling, which
provides Shapley values for each of the n = 100 iterations. Results are con-
tained in Figure 1. The figure shows that Shapley value estimates are very
consistent across model specifications, and that loan amount is the variable
fostering the discriminatory power of all the classification models employed.
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