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ABSTRACT: We present two families of matrix-variate hidden Markov regression
models, which differ in how they handle covariates (i.e., as fixed or random). The
models achieve parsimony by using the eigen-decomposition of the components’ co-
variance matrices. A two-step fitting strategy is implemented due to the high number
of parsimonious models. These models are then investigated on a real dataset.
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1 Introduction

Hidden Markov models (HMMs) are widely used for analyzing longitudinal
data due to their mathematical flexibility. HMMs can also be modified to in-
corporate covariates, resulting in hidden Markov regression models (HMRMs),
which are useful in regression settings (Bartolucci et al, 2012).

Broadly speaking, HMRMs can be divided into two main groups based on
whether the covariates contribute to assigning observations to hidden states.
The first group involves observed covariates that act as fixed effects shared
by all units in the same hidden state, resulting in hidden Markov regression
models with fixed covariates (HMRMFCs). Examples of this category can be
found in studies by Bartolucci and Farcomeni (2015), and Maruotti and Punzo
(2017). The second group, on the other hand, treats observed covariates as ran-
dom and includes information about their distribution in the model to facilitate
clustering. This approach leads to hidden Markov models with random covari-
ates (HMRMRCs) as demonstrated in studies by Punzo et al (2018, 2021).

The focus of our study is to present and examine HMRMFCs and HMRM-
RCs as potential tools for analyzing matrix-variate longitudinal data. These
models will be referred to as MV-HMRMFCs and MV-HMRMRCs, respec-
tively. This type of data is typically obtained by observing P×R matrices of
variables for I units over T periods. In essence, the data can be organized into
a four-dimensional array with dimensions of P×R× I ×T .



To achieve parsimony, the two covariance matrices of each hidden state
are subjected to eigen-decomposition. Because of the different formulations,
the overall number of models is different between the two families. In the
case of MV-HMRMFCs, only the covariance matrices of the response vari-
ables are available for each state, producing 98 MV-MRMFCs. On the other
hand, for MV-HMRMRCs, both the response and covariate covariance matri-
ces are available in each state, leading to 9604 MV-HMRMRCs. Therefore, a
convenient approach for fitting the MV-HMRMRCs is employed to reduce the
required computational effort.

We examine a dataset obtained from the Italian National Institute of Statis-
tics to explore the relationship between unemployment and labor force partici-
pation in the Italian labor market. The data is structured in a two-factor design
based on gender and age groups, and it covers four years at the provincial level.

2 Methodology

Let {Yit ; i = 1, . . . , I, t = 1, . . . ,T} be a sequence of response variables, where
each Yit is a matrix of dimension P×R referring to the ith observation for
the tth time point. The main assumption of an MV-HMM is that the ran-
dom matrices in the above sequence are conditionally independent given a
hidden process {Sit ; i = 1, . . . , I, t = 1, . . . ,T} that follows a first-order Markov
chain with state-space {1, . . . ,k, . . . ,K}. This process is governed by the ini-
tial probabilities πik =Pr(Si1 = k), k = 1, . . . ,K, and the transition probabilities
πik| j =Pr(Sit = k|Sit−1 = j) , t = 2, . . . ,T and j,k = 1, . . . ,K, where j refers to
the state previously visited. We assume a matrix-variate normal distribution
for the observations at every time occasion, that is, f (Yit = Yit |Sit = sit) ∼
MV NP×R(Mk,ΣΣΣk,ΨΨΨk), where Mk is the P×R mean matrix, and ΣΣΣk and ΨΨΨk are
the P×P and R×R covariance matrices related to the P rows and R columns,
respectively, for latent state k.

In numerous longitudinal studies, apart from the series of responses, there
exists a series of covariates {Xit ; i = 1, . . . , I, t = 1, . . . ,T}, being each Xit a
matrix of dimension Q×R, that we would like to functionally relate to the
former. Thus, we have to extend MV-HMMs to the two regression-based cate-
gories introduced in Section 1. By starting with the fixed covariates approach
(MV-HMRMFCs), in each latent state k, we are interested in modeling the
conditional distribution

f (Yit = Yit |Xit = Xit ,Sit = k) , (1)



by assuming a linear functional form for its expectation

E(Yit = Yit |Xit = Xit ,Sit = k;Bk) = BkX∗
it , (2)

where Bk is a P× (1+Q) matrix of regression coefficients and X∗
it is a (1+

Q)×R matrix having a vector of ones in the first row (to incorporate the inter-
cept in the model) and the Q covariates from the second row onwards.

When the random covariates approach (MV-HMRMRCs) is considered, in
each latent state k, we model the joint distribution

f (Yit = Yit ,Xit = Xit |Sit = k) =
f (Yit = Yit |Xit = Xit ,Sit = k) f (Xit = Xit |Sit = k) , (3)

by also assuming (2).
To introduce parsimony in (1) and (3), we apply the eigen-decomposition

to the covariance matrices, as commonly done in the model-based cluster-
ing literature (see, e.g. Tomarchio et al, 2022). This creates two families
of models: 98 parsimonious MV-HMRMFCs and 9604 parsimonious MV-
HMRMRCs.

Parameter estimation is implemented via a maximum likelihood approach
based on the expectation conditional-maximization (ECM) algorithm (Meng
and Rubin, 1993) and recursions widely used in the HMM literature (Baum
et al, 1970). To make computationally affordable the fitting of 9604 parsimo-
nious MV-HMRMRCs, a two-step fitting strategy (not discussed here for the
sake of space) is implemented.

From a classification perspective, by using a maximum a posteriori prob-
abilities approach (Punzo et al, 2021), each unit is classified to one of the K
hidden states, at each time point. This information can be useful to track how
the observations move between the hidden states as well as to identify which
state is mainly sojourned by each observation.

3 Real data example

We examine the relationship between unemployment and the Labor Force Par-
ticipation (LFP) of 106 Italian provinces, utilizing data from the Italian Na-
tional Institute of Statistics (ISTAT). Our analysis focuses on the four years
from 2018 to 2021. The unemployment and LFP for each province are recorded
in a two-factor percentage format, categorized by gender (male and female)
and age (15-24, 25-34, 35-49, 50-74). Therefore, both variables are presented
in a four-way array format, with dimensions of 2×4×106×4.



By limiting here our discussion to the results obtained after the fitting of
parsimonious MV-HMRMRCs, we found that the best solution according to
the Bayesian information criterion (BIC) has K = 5 hidden states. The esti-
mated regression coefficients (omitted here due to space constraints) indicate a
negative sign in 80% of the cases. This suggests that the so-called discouraged
worker effect is widespread across the provinces of Italy. The estimated mean
matrices (omitted here due to space constraints) illustrate that the states can be
sorted according to the levels of unemployment, both in gender and age fac-
tors. Specifically, the unemployment levels consistently decrease from the first
state to the fifth state. Looking at the classification obtained by assigning each
state to the province it mainly sojourns, it appears that there is a geographical
pattern. The first two states seem to be predominantly composed of provinces
located in the southern part of Italy, while the other three states appear to con-
tain provinces located in the central and northern parts of the country.
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