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ABSTRACT: Cluster-weighted factor analyzers (CWFA) models are a flexible family
of mixture models for fitting the joint distribution of a random vector constituted by
a response variable and a set of explanatory variables. It is a useful tool especially
when high-dimensionality and multicollinearity occurs. This paper extends CWFA
models in two significant ways. Firstly, it allows to predict more than one response
variable accounting for their potential interactions. Secondly, it identifies factors that
relate to disjoint clusters of explanatory variables, simplifying their interpretatiblity.
This leads to the multivariate cluster-weighted disjoint factor analyzers (MCWDFA)
model. An alternating expectation-conditional maximization algorithm is used for
parameter estimation. Application of the proposed approach to both simulated and
real datasets is presented.
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1 Introduction

Mixture models represent a powerful statistical tool for clustering observa-
tions which is an essential task in many fields, such as economics, engineer-
ing, and social sciences. In the context of media technology, Gershenfeld,
1997 proposed a particular family of Gaussian mixture models, called cluster-
weighted models (CWMs), which has also been called saturated mixture re-
gression models in Wedel, 2002. The context of interest is represented by data
arising from a random vector (X,Y )′, in which a functional dependence of
Y on X is assumed for each mixture-component and the component-specific
joint density of (X,Y )′ is factorized into the product of the conditional density
of Y |X and the marginal density of X. Ingrassia et al., 2012 reformulated the
CWM in a statistical setting under the assumptions that both the component-
specific conditional distributions of Y |X and the component-specific marginal



distributions of X are Gaussian. To allow the applicability of CWM in high di-
mensional X-spaces or when multicollinearity occours, Subedi et al., 2013 pro-
posed the cluster-weighted factor analyzers (CWFA) model, which addressed
the problem by assuming a latent structure for the explanatory variables in each
mixture component. The aim of this paper is to propose a new model, called
the multivariate cluster-weighted disjoint factor analyzers (MCWDFA) model,
extending CWFA model in a two fold way. Firstly, it allows to predict more
than one response variable accounting for their potential interactions. It leads
to a more flexible model since it can capture the complexity and variability
of real phenomena more accurately providing a more complete understanding
of the underlying mechanisms of a case study. Secondly, it identifies factors
that relate to disjoint clusters of explanatory variables which similarly predict
the responses. In particular, following the idea of Martella et al., 2008 and
Vichi, 2017, we replace the factor loading matrix with the product of a binary
row-stochastic matrix and a diagonal matrix in the factor analyzer structure.
In this way, the explanatory variables that similarly predict the responses can
be clustered into groups such that an explanatory variable loads only on one
single factor, and thus, it is uniquely associated by a single factor only. This
simplifies not only the interpretability of the resulting factors but also the inter-
pretability of the (many) regression coefficients, especially when the explana-
tory variables matrices are in high-dimensional X-spaces.

2 The cluster-weighted factor analyzers model

Briefly, the CWFA model (Subedi et al., 2013) is a particular mixture model
for fitting the joint distribution of a random vector composed of a response
variable and a set of explanatory variables, where, within each Gaussian in the
mixture, a single factor analysis regression (FAR) model (Basilevsky, 1981)
is assumed. Let y ∈ R and X ∈ Rp be a response variable and a vector of
explanatory variables, respectively, realizations of the pair (X,Y ). Specifically,
the CWFA model postulates that:

Y = β0g +β
′
1gX+ eg with X = µg +ΛgFg + εg (1)

with probability πg (g = 1, . . . ,G). Terms µg represents the component-specific
mean vectors of X, Λg is a p×Q component-specific factor loadings matrix
(Q < p), Fg is a Q-dimensional vector of component-specific factors, which
are assumed to be i.i.d. draws from a Gaussian distribution N(0,IQ) and IQ
denotes the Q×Q identity matrix, εg are i.i.d. component-specific errors with



Gaussian distribution N(0,Ψg), where Ψg = diag(ψ1g, . . . ,ψpg), that are as-
sumed to be independent of Fg. Furthermore, β0g and β1g are the component-
specific intercept and the (1× p) component-specific vector of the regression
coefficients, respectively; while eg is a component-specific disturbances vari-
able with Gaussian distribution N(0,σ2

g). Moreover, by assuming that Y is
conditionally independent of F given X = x in the generic g-th mixture com-
ponent, we get that the joint density of (X,Y ) is given by:

p(x,y,θ) =
G

∑
g=1

πgN(y|x;m(x;βg),σ
2
g)N(x;µg,ΛgΛ

′
g +Ψg) (2)

where m(x;βg) = β0g+β
′
1gX and θ = {πg,βg,σ

2
g,Λg,Ψg;g = 1, . . . ,G}. A col-

lection of sixteen parsimonious CWFA models can be obtained by constraining
or not σ2

g = σ2, Λg = Λ,Ψg = Ψ,andΨg = ψgIp.

3 The multivariate cluster-weighted disjoint factor analyzers model

As mentioned previously, here we introduce the MCWDFA model that ex-
tends CWFA framework by considering more than one response variable and
by identifying factors that relate to disjoint clusters of explanatory variables
which similarly predict the responses. Let X be the p-dimensional vector of
explanatory variables and Y be the M-dimensional vector of the response vari-
ables. For each component g (g= 1, . . . ,G), the MCWDFA model is composed
of two parts. The first extends the regression model in (1) with a multivariate
regression model formalizing the relations between the M responses and the p
explanatory variables, as follows:

Y = B0g +B′
1gX+ eg (3)

where B0g and B1g are the (M × 1) component-specific vector of intercepts
and the (p×M) component-specific matrix of the regression coefficients, re-
spectively; eg is the (M × 1) component-specific vector of disturbances vari-
ables with Gaussian distribution N(0,Σeg). On the other hand, the second part
of the model assumes that the factor loading structure of the CWFA model
holds except for the factor loading matrix Λg. In fact, to introduce explana-
tory variable clustering forming disjoint clusters which similarly predict the
responses, Λg is replaced by the product of the specific matrices Vg and Wg,
where Vg = [v jqg] is a (p×Q) component-specific binary row stochastic matrix



representing the membership matrix of the explanatory variables into Q clus-
ters corresponding to Q factors, i.e. v jqg = 1 if and only if, for observations in
the g-th component, the j-th explanatory variable belongs to cluster q, 0 oth-
erwise ( j = 1, . . . , p); while, Wg = diag(w1g, . . . ,wpg) is a (p× p) component-
specific diagonal matrix of weights for the explanatory variables. Constraint
V′

gWgWgVg = diag(w2
.1g, . . . ,w

2
.Qg), with w2

.qg = ∑
p
j=1 w2

jqg > 0 has to be satis-
fied, where the third index q added to w jg indicates the factor associated with
the j-th variable. Thus, the factor structure in (1) can be constrained in order
to include the explanatory variables clustering as follows:

X = µg +WgVgFg + εg. (4)

It is interesting observe that, recalling similar factor assumptions of the CWFA
model, the component-specific covariance matrix of X, after the proper permu-
tation of explanatory variables, has a block diagonal form, where each block is
the component-specific covariance matrix of the subset of the explanatory vari-
ables related to a specific factor. Maximum likelihood parameter estimates are
derived using an alternating expectation-conditional maximization (AECM)
algorithm. Application of the proposed approach to both simulated and real
datasets is presented.
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