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ABSTRACT: We propose an extension of latent class models to deal with multilevel cross-
classified data structures, where each observation is considered simultaneously nested
within two groups, such as for instance, children within both schools and neighborhoods.
We show how such a situation can be dealt with by having a separate set of mixture
components for each of the crossed classifications. Unfortunately, given the intractability
of the derived loglikelihood, the EM algorithm can no longer be used in the estimation
process. We therefore propose an approximate estimation of this model using a stochastic
version of the EM algorithm similar to Gibbs sampling.
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1 Introduction

Latent class analysis (LCA) is a popular model-based approach for data clustering
of units on the basis of observations arising from a set of categorical indicators.
When the data have a multilevel hierarchical structure with units nested within
higher level observations, such as children nested within schools, a possible ex-
tension (Laird, 1978) discussed in Vermunt, 2003 and Vermunt, 2008 takes two
levels of clustering with separate latent variables for lower-level units and higher-
level ones. Sometimes data have a cross-classified structure with units grouped
within multiple higher level units, for example, children can be considered nested
within both schools and neighborhoods. In this contribution we propose to ex-
tend Multilevel Latent Class analysis to handle cross-classification. Given the un-
tractability of the derived likelihood the standard EM algorithm can not be applied
in the estimation, and we propose to use a stochastic version of the EM algorithm
that can handle the hierarchy of units but also their double cross-classification,
similar to what done in Keribin et al., 2015 for coclustering.



2 Model definition

Let Yi jkq be the response on categorical indicator (or item) i (i = 1, . . . , I) of indi-
vidual or first level unit j ( j = 1, . . . ,nkq) belonging simultaneously to the group
level units k (k = 1, . . . ,K) and q (q = 1, . . . ,Q). We denote with X jkq, Wk and
Zq the discrete latent variables respectively for membership of level-1 units and
for the two group level units. A particular latent class will be indicated with `
(` = 1, . . . ,L), for level-1 units, h (h = 1, . . . ,H) and r (r = 1, . . . ,R) for level-2
units. For ease of notation, we focus on binary indicators and denote with πi|` the
probability distribution parameters of each item within the first level latent class.
The data model consists of two parts, described through two separate equations,
one for the level-2 cross-classified (or higher level) units and one for the level-1
(or lower level) units. Each of the two equations is a mixture of probabilities. The
model for the higher part is described, in the complete data form, by

P(Ykq,Wk = h,Zq = r) = P(Wk = h,Zq = r)P(Ykq|Wk = h,Zq = r)

= P(Wk = h,Zq = r)
nkq

∏
j=1

P(Y jkq|Wk = h,Zq = r)

= P(Wk = h)P(Zq = r)
nkq

∏
j=1

P(Y jkq|Wk = h,Zq = r).

We assumed independence of observations within a combination of groups given
their belonging to the cross-classified latent classes, and also marginal indepen-
dence of the two higher level latent classes Wk and Zq.
The second part models the density of observations conditionally to their simulta-
neous belonging in higher level cross-classified latent classes, that is:

P(Y jkq|Wk = h,Zq = r) =
L

∑
`=1

P(X jkq = `|Wk = h,Zq = r)
I

∏
i=1

P(Yi jkq|X jkq = `),

in which we have assumed the local independence of indicators within latent
classes.

3 Parameters’ Estimation

The estimation of model parameters θθθ = {π`|hr,πh,πr,πi|`}, requires the maxi-
mization of the observed likelihood of the model in the form

L(θθθ;y) =
H

∑
h1=1

H

∑
h2=1
· · ·

H

∑
hK=1

R

∑
r1=1

R

∑
r2=1
· · ·

R

∑
rQ=1

K

∏
k=1

P(Wk = hk)
Q

∏
q=1

P(Zq = rq)×



nkq

∏
j=1

[
L

∑
`=1

P(X jkq = `|Wk = hk,Zq = rq)
I

∏
i=1

P(Yi jkq|X jkq = `)

]
.

The presence of a double missing data structure at higher level, with Wk and Zq
unobserved, causes that the likelihood cannot factorize as a product of the mixing
probabilities as for standard LC and multilevel LC models. The likelihood be-
comes easily untractable and standard EM algorithms cannot be directly applied
for its maximization. We propose to consider a Stochastic version of the algo-
rithm with the inclusion of a Gibbs sampling scheme between the E and the M
step. The Stochastic step consists in the consecutive sampling from marginal pos-
terior distributions of higher level and lower level latent classes, which reduces
the computational burden.

E and S step

After initialization of πh = P(Wk = h), πr = P(Zq = r), π`|hr = P(X jkq = `|Wk =
h,Zq = r) and πi|` iterate the following sampling steps

1) Draw w(t) from a Multinomial distribution with probabilities

P(Wk = h|yk,z(t−1)) =
πhP(Yk|z(t−1),Wk = h)

P(Yk|z(t−1))
,

P(Yk|z,Wk = h) =
QK

∏
qk=1

R

∏
r=1

[
nkq

∏
j=1

P(Y jkq|Wk = h,Zq = r)

]zr
q

;

2) Draw z(t) from a Multinomial distribution with probabilities

P(Zq = r|yq,w(t)) =
πrP(Yq|w(t),Zq = r)

P(Yq|w(t))
,

P(Yq|w,Zq = r) =
KQ

∏
kq=1

H

∏
h=1

[
nkq

∏
j=1

P(Y jkq|Wk = h,Zq = r)

]wh
k

;

3) Draw x(t) from a Multinomial distribution with probabilities

P(X jkq = `|y jkq,w(t),z(t)) =
[
π`|h,rP(Y jkq|X jkq = `)

]wh
jkzr

jq

P(Y jkq)
,

where wh
k , zr

q, wh
jk, zr

jq and x`jkq are all binary indicators of units’ membership
at different levels, in particular wh

jk, zr
jq are the expansion of higher level

latent class indicators over the first level units j.



M step

πh =
∑

K
k=1 wh(t)

k
K

, πr =
∑

Q
q=1 zr(t)

q

Q
,

π`|hr =
∑

n
j=1 wh(t)

jk zr(t)
jq x`(t)jkq

∑
n
j=1 wh(t)

jk zr(t)
jq

, πi|` =
∑

n
j=1 x`(t)jkq yi jkq

∑
n
j=1 x`(t)jkq

.

Final estimates are calculated as the mean over the total number of iterations,
burn-in period excluded.

Results from simulation studies with data generated under varying scenarios,
prove that the estimators have satisfactory finite sample properties. In figure 1 is
reported the error resulting from the estimation of π`|h=1,r=1 over 50 binary simu-
lated datasets with fixed number of classes L=4, H=R=2. Two scenarios of moder-
ate increasing separation have been compared. It emerges that the average across
replications is close to the true value, with an improvement with the increase of
the number of groups. Similar results are observed for the other first-level and
distribution parameters. Almost no error is observed for high-level latent class
parameters. In the implementation of the SEM-Gibbs 150 iterations have been
considered, including 50 burn-in. These are sufficient for convergence.

Figure 1. Error on the estimation of π`|h=1,r=1.
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