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Abstract: We consider regression models for panel data with time-varying
effects in a Bayesian framework. We implement shrinkage of regression effects
and the process variances of the effects to distinguish between effects that are
practically zero, constant or time-varying via shrinkage priors. Longitudinal
dependence is taken into account by including a subject specific random factor
with weights that may also vary over time. The model is applied to analyse
panel data on annual incomes of mothers returning to the job market after
maternity leave.
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1 Introduction

Panel data where subjects are observed at several time points provide
richer information than cross sectional data but pose additional chal-
lenges as correlation of observations within subjects has to be taken
into account. The multiple measurements per subject allow to model
their heterogeneity and the longitudinal structure provides information
on development over time. A standard way to take into account hetero-
geneity in panel data regression analysis is by including subject specific
random effects in the linear predictor and development over time can
be modelled by allowing for time-varying regression effects. However,
modelling all regression effects as time-varying will result in an over-
specified model if actually one or more effects are time-constant or even
0. In a Bayesian approach, based on an adaquate model formulation,
appropriate prior distributions allow to identify constant or zero effects
in time series regression models (Frühwirth-Schnatter & Wagner, 2010).
In this paper we will use the shrinkage priors recently proposed in Bitto
& Frühwirth-Schnatter, 2019 for time series and investigate their per-
formance for panel data where the number of subjects is larger than 1



but time series are short, e.g. in our application we have individual time
series of length 8.

2 Model specification and inference

2.1 Regression model with time-varying effects
To keep notation simple, we assume balanced panel data where i= 1, ...,n
subjects are observed at time points t = 1, ...,T . Let yit denote the
response of subject i at time t and xit is the p× 1 vector of covariates.
We consider the following regression specification

yit = xT
itβt + ϵit, ϵit ∼ N (0,Ω) (1)

where βt is the p× 1 vector of regression effects at time t and Ω is a
T ×T covariance matrix.

To model time-varying parameters we assume that the regression
effects follow a random walk

βt = βt−1 +ωt, ωt ∼ N (0,Q)

with independent increments, Q = diag(θ2
1, . . . ,θ

2
p), and starting values

β0 ∼ N (0,Q0).

The process variance θ2
j , j= 1, . . . ,p carries information on the evolve-

ment of the regression effect βjt over time.
To allow shrinkage to time-constant or zero effects we use shrinkage

priors on the effects and process standard deviations in the non-centered
parameterization (Frühwirth-Schnatter & Wagner, 2010), which is given
as

βt = β +θβ̃t.

Here θ = diag(θ1, . . . ,θp) is the vector of process standard deviations and
β̃t is defined as

β̃t = β̃t−1 + ω̃t, ω̃t ∼ N (0,I).
Hence, the regression model (1) in its non-centered parameterization is
given as

yit = xT
itβ +xT

itθβ̃t + ϵit.

Shrinkage of elements of β as well as θ is induced by appropriate prior
distributions.



2.2 Modelling longitudinal association
To allow for longitudinal association within subjects we specify the error
term ϵit in terms of a subject specific latent factor fi and the idiosyn-
cratic error εit as

ϵit = λtfi +εit, εit ∼ N (0,σ2
t )

and hence
Ω = λλT +Σ

where Σ = diag(σ2
1, . . . ,σ

2
T ). This model encompasses as special case

compound symmetry structure of Ω when λt =λ. To model time-varying
factor loadings we again model the evolvement of the factor loadings by
a random walk

λt = λt−1 +νt, νt ∼ N (0,ψ2).

parameterization.

2.3 Prior Distributions
To encourage shrinkage of constant effects βj and their process variances
θ2

j , j = 1, . . . ,p, following Bitto & Frühwirth-Schnatter, 2019 we specify
the priors on βj as independent Normal-Gamma and on the process vari-
ances θj as independent double Gamma-priors. The same specification
is used for the priors on the factor loading parameters in the noncentered
parameterisation.

For the error variances σ2
t of the idiosyncratic errors we use indepen-

dent uninformative Inverse Gamma priors.

2.4 Inference
Inference is performed by MCMC methods extending the Gibbs sam-
pling proposed in Bitto & Frühwirth-Schnatter, 2019 by the additional
steps to sample the subject specific factors and the factor loadings in
the non-centered parameterization.

3 Application

We apply the developed methods to analyse earnings of mothers in Aus-
tria after their return to the labor market after their last maternity



leave. The data set comprises earnings for n = 8877 mothers after re-
turn to labour market observed for T = 8 panel periods.

Covariates in the regression model are categorical predictors of the
number of children (baseline: 1 child, dummy for 2 children, dummy for
3 or more children), binary variables for type of contract (baseline: white
collar), leave duration and working experience (for both the baseline is
below the median) as well as the log-earnings before the maternity leave.
All regression parameters, except the effect of 3 or more children and
also the factor loadings vary over time. Figure 1 compares the estimated
time-varying intercept and the effects of 3 or more children under the
shrinkage priors to the estimated effects in a random intercept model
with unstructured time-varying effects. The shrinkage prior results in
smoother effects which can also be effectively reduced to zero, see the
lower panel of Figure 1.

Figure 1. Results for intercept and effect of 3 or more children. Left: Posterior
mean estimates and 95%-HPD intervals of the regression effects. Dotted lines
are the estimated time-varying regression effects from a random intercept model
without smoothing. Right: Posterior of the process standard deviations.
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