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ABSTRACT: Multiplex arises when the network for the same set of nodes is repeti-
tively observed on different layers that can represent, for instance, different statistical
units or different criteria to connect the nodes. A multi-level Stochastic Blockmodel
for multiplexes is introduced to provide a joint clustering of layers and nodes. This is
achieved by considering two different sets of discrete latent variables. A former set
allows us identifying groups of layers sharing similar connectivity patterns. A letter
set of discrete latent variables, nested within the former, allows us identifying groups
of nodes sharing similar relational features. A variational Expectation-Maximization
algorithm is derived for estimation purposes.

KEYWORDS: network data, model-based clustering, finite mixtures, EM algorithm,
variational inference.

1 Introduction

Uncover patterns underlying relations between nodes of a network is a com-
plex task, especially when the network is repeatedly observed on a number of
statistical units, or when different criteria to connect the nodes are available.
For instance, connections between brain regions may be observed on a number
of individuals, or imports/exports between countries may entail different types
of products. In such cases, data provide a multilevel structure and multiplexes
can be effectively used to describe, analyze, and model interactions between
nodes (Barbillon et al., 2017).

Stochastic blockmodels (SBMs - Daudin et al., 2008) represent a valuable
approach for identifying clusters of nodes sharing common relational features.
These are identified by including in the model specification a set of node-
specific, discrete, latent variables inducing nodes’ partitioning. When multi-
plexes are available, one can decide to apply a SBM to each layer of the data
structure, thus obtaining a separate clustering of nodes for each layer. As an
alternative, the multivariate nature of dyadic relations may be properly taken



into consideration and nodes’ clustering may be defined by fully exploiting the
richness of the data at hand (Barbillon et al., 2017).

We introduce a specification of the SBM for multiplexes that allows us to
obtain a clustering of both layers and nodes. In detail, we introduce a multi-
level SBM where layer-specific, discrete, latent variables allow us to cluster
layers (i.e., the statistical units) sharing similar connectivity patterns. Within
each of such clusters, nodes characterized by similar relational features are
clustered by means of a further set of node-specific, discrete, latent variables.
As typical of SBMs, Maximum Likelihood (ML) parameter estimates cannot
be computed due to the intractability of the likelihood function. This makes in-
feasible the use of an Expectation-Maximization (EM - Dempster et al., 1977)
algorithm, as the posterior distribution of the random variables to compute at
the E-step of the algorithm still requires the derivation of the likelihood func-
tion. To overcome the issue, we employ an extended variational EM algorithm,
where the true, intractable, posterior distributions are substituted by their ap-
proximate versions, having a tractable form; see e.g., Blei et al., 2017 for a
thorough treatment of the topic.

2 Model definition

Let G = {G k}k∈(1,...,K) denote a multiplex characterized by K layers. Each
graph G k = (N ,E k) ∈ G is defined by the same node set N = {1, . . . ,n} and
the layer-specific edge set E k, with k = 1, . . . ,K. Equivalently, the multiplex
G may be defined in terms of the adjacency array Y = {Y k}k∈(1,...,K), with Y k

being the adjacency matrix associated to the k-th layer. Its generic element is

Y k
i j =

{
1 if the pair (i, j) ∈ E k,

0 else.

That is, Y k
i j = 1 iff nodes i and j are joined by an edge in the network associated

to the k-th layer. For simplicity, we focus on the case of undirected networks,
even though the extension to the directed case is straightforward.

Let {Uk}k=(1,...,K) denote layer-specific, independent and identically dis-
tributed, latent variables defined over the support {1, . . . ,s} and let ηv =Pr(Uk =
v), for all k ∈ 1, . . . ,K. Furthermore, let Zk

i , i = 1, . . . ,n, be a node-level la-
tent variable, nested with respect to Uk,k = 1, . . . ,K, defined over the support
{1, . . . ,m} and let αqv = Pr(Zk

i = q |Uk = v).
We assume that, conditional on the latent variables Uk,Zk

i , and Zk
j , the ran-

dom variables Y k
i j are independent each other and follow a Bernoulli distribu-



tion with tie probability only depending on the block membership of layers
and nodes involved in the relation. That is,

Y k
i j | Zk

i = q,Zk
j = l,Uk = v iid∼ Be(πqlv).

Based on the above assumptions and denoting with θ the set of all free
model parameters, the log-likelihood function can be written as

`(θ) = log p(y) = log∑
u

∑
z

p(y | u,z)p(z | u)p(u) (1)

= log∑
u

∑
z

{[
K

∏
k=1

n

∏
i=1

∏
j>i

Be(πzk
i ,z

k
j ,uk

)

][
K

∏
k=1

n

∏
i=1

αzk
i ,uk

][
K

∏
k=1

ηuk

]}
,

where y is a realization of Y , and ∑u and ∑z are shorthands for ∑u1 . . .∑uK and
∑z1

1
∑z2

1
. . .∑zK−1

n
∑zK

n
, respectively.

As evident, deriving parameter estimates by either a direct or an indirect
maximization of equation (1) is impractical. Indeed, this would require the
computation of multiple summations, which is infeasible from a computational
standpoint, even for networks of very limited size. To overcome the issue, an
EM algorithm based on a variational approximation of the likelihood func-
tion may be employed as an effective alternative, as detailed in the following
section.

3 Parameter estimation and inference

To derive parameter estimates, we extend the variational approach firstly in-
troduced by Daudin et al., 2008 in the SBM framework. Accordingly, starting
from the likelihood function detailed in equation (1), estimates are derived by
maximizing the following lower bound

F (q(z,y),θ) = `(θ)−KL [q(z,u) || p(z,u | Y ,θ)] , (2)

where KL[· || ·] denotes the Kullback-Leibler divergence between the true, in-
tractable, posterior distribution of the latent variables p(z,u | y) and the cor-
responding approximating function q(z,u). As we are not able to let KL van-
ish due to intractability of the likelihood, we look for the best approximation
q(z,u) in the class of completely factorized distributions

q(z,u) = q(u)q(z) =
K

∏
k=1

M ult(1,τk)
n

∏
i=1

M ult(1,φi).



The variational EM (VEM) algorithm alternates between two separate steps
until convergence: (i) a VE-step, in which we maximize equation (2) with re-
spect to the variational parameters τk and φi; (i) a VM-step, in which maximize
(2) with respect to model parameters θ. Different works in the literature show
the effectiveness of the variational approach in recovering the true value of
model parameters in θ both with finite samples (see e.g., Mariadassou et al.,
2010) and asymptotically (see e.g., Celisse & Pierre, 2012).

To select the optimal number of blocks s and m, we may rely on an In-
tegrated Classification Likelihood criterion (ICL - Biernacki et al., 2000), as
typically done in the SBM framework. Once the optimal model is selected,
layer and node memberships are determined on the base of the parameter esti-
mates τ̂k and φ̂i, obtained at convergence of the estimation algorithm.
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