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ABSTRACT: Statistical depth functions are a class of functions that provide a center-
outward ordering of sample points in multidimensional space. In this work we intro-
duce a novel depth function that is based on the cumulative distribution function along
random directions, and is thus termed directional distribution depth. Some properties
and a connection to the Mahalanobis depth when applied to sphered data are shown.
The proposed depth is used as a basis for supervised classification using maximum
depth classifiers and more flexible polynomial separators in the depth space. It is
shown to be effective and competitive against other depth functions through simulated
experiments and real data applications.
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1 Introduction

In multivariate analysis the identification of order statistics, quantiles and atyp-
ical patterns is very challenging due to the lack of an order among observations,
which is instead natural in the real line R! (Kong & Mizera, 2012; Serfling,
2002). To overcome this challenge, the most important line of research is
rooted in the concept of statistical depth, which leads to a center-outward or-
dering of the sample points in R” with p > 2. More specifically, a depth func-
tion is a function that can assign a real number to each point of in multivariate
space, measuring the outlyingness of the point with respect to the barycenter,
and can be used as a starting point for outlier detection, clustering, classifica-
tion.

Popular depth functions are the Mahalanobis depth, which is based on the
Mahalanobis distance (Mahalanobis, 1936), and the halfspace depth, which
measures the depth of a point by the smallest probability of a halfspace that
contains that same point. Liu et al. (1999) described different depth func-
tions as valuable exploratory tools in multivariate analysis. Introducing some



notation, let X be a multivariate random variable of order p with a probabil-
ity distribution F: a data depth measures how deep (or central) a given value
x of X is with respect to the data cloud or a given distribution function and
is usually denoted as D(x,F). A simple example is the Mahalanobis depth,
which is inversely proportional to the Mahalanobis distance: MD(x,F) =

1+ (x— WE (x— ml - , where p and X are the mean vector and dispersion
matrix of X and can be estimated from the data.

Zuo & Serfling (2000) reviewed some of the most popular depth func-
tions and introduced some desirable properties that in their view can be define
a proper depth function. More precisely, a depth function is a non-negative
and bounded function, which is: (i) invariant to the coordinate system or to
the scale of the underlying measurements (affine invariance); (ii) maximum at
its center; (iii) monotonically decreasing when a point moves away from the
deepest central point and (iv) it should approach zero as a point approaches
infinity. Some other properties that can be attractive and that we will consider
are consistency of the function based on sample data to a population counter-
part, and computational feasibility, i.e., it should be possible to compute the
depth values of data points efficiently even for large p.

2 Directional Distribution Depth

Let S be a random vector of length p with a uniform distribution on the sphere,
that is any of its realizations s is a direction belonging to the sphere (S?~!) and
having unit norm (||s||2 = 1). The depth of a point is derived by projecting it
along any direction and evaluating the cumulative distribution function of the
univariate distribution of the projected data ST X. The resulting probability is
transformed so that the depth is symmetric with respect to the median, defined
as the deepest point. As a last step we take the expected value over all random
direction. More precisely, the directional distribution depth is the mapping
R? x F — [0, 1] defined as

D(x,F) = Eg [1 —2|Fgrx(STx) —0.5\] , (1)

where Eg is the expectation with respect to the random vector S, F is the proba-
bility distribution of the multivariate data and Fgrx is the marginal probability
distribution of the transformation S™X evaluated at S'x. Fgrx can be any
(probabilistic or nonparametric) univariate distribution function differently pa-
rameterized along each direction. In this work we will focus and compare the
depth based on the Gaussian distribution, on the fgld quantile function due to



its large flexibility (Redivo et al., 2023; Chakrabarty & Sharma, 2021) and the
nonparametric kernel density estimation.

Theorem 1. Given whatever model choice of Fs, the depth defined in (1) is

a proper depth function in the sense of the definition given by Zuo & Serfling
(2000).

An interesting property closely related to the proposed depth function is
that the average squared distance of univariate projections from the mean, ap-
plied to sphered data, is proportional to the Mahalanobis distance in the origi-
nal multivariate space:

s [(STi—STﬂﬂ — x)E x),

where X and j1 are respectively the point and center transformed via the spher-
ing matrix. Next we adapt our depth definition to sample data. Let X,, be a
sample of size n from X, without loss of generality we assume it to sphered.
Let sp be a set of B random directions. Then the sample version of the direc-
tional distribution depth for a generic point Xx; is

By 121, (s %)~ 0.5]

B )
This quantity is strongly consistent with respect to its population counterpart,
that is as n — oo and B — oo, D,,(X,F) = D(x, F).

Dy(x;, F) = 2)

3 Application to Supervised Classification

We apply to proposed depth function to supervised classification by allocat-
ing a new observation to the class with the maximum depth among the K
populations (Ghosh & Chaudhuri, 2005). The performance of the proposed
depth (with its three distribution estimators) is evaluated through a simulation
study, comparing it to maximum depth classifiers based on other depth defi-
nitions (Mahalanobis, projection, simplicial and halfspace) and to linear and
quadratic discriminant analysis. The simulation comprises three distributional
scenarios: with Gaussian data classifiers based on the directional distribution
depth perform similarly well to those based on data generating normal model;
with t-distributed data, linear discriminant analysis performs the best, being
quite robust to the heavier tails, with the distributional depth classifiers lag-
ging shortly behind; with skewed data our depth performs generally better



than the alternatives, being the only one that can accommodate non-elliptical
data, which is assumed by the Mahalanobis depth and the discriminant anal-
ysis methods. Throughout the simulations classifiers based on the halfspace
depth have substantially worse results, and this is probably due to the diffi-
culty in computing the depth, with only an approximation being available in
higher dimensions, where the resulting classifier suffers the most.

We also applied depth based classifiers to commonly used benchmark data
sets. Here we have considered polynomial separators for the classes in the
depth space, in contrast to the quadrant bisector line implicitly assumed by the
maximum depth classifier. This method is called DD-classifier and has been
introduced in Li ef al. (2012). The DD-classifier based on the new depth is
able to achieve competitive accuracies (measured through mean accuracy in
repeated training-testing splits) even against K-nearest neighbours and SVM.
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