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ABSTRACT: Motivated by a problem that commonly arise in the food industry, a
methodology based on the Single Functional Index Model (SFIM) is proposed and a
test procedure to specify the link function between the real response and the functional
covariate is described and applied.
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1 Introduction

In the food industry, to obtain the composition of a given substance in terms
of protein, fat, moisture, etc. is an important task. Since a full–scale chemical
analysis is often costly and time consuming, it is preferred to estimate that
composition by using spectrometric curves which can be obtained easily as
the absorption of a reflected light for various wavelengths. In that situation a
regression model with a scalar response (the percentage of the component) and
a functional covariate (the spectrometric curve, or a transformation of it) can
be profitably used. Consider for instance the prediction of the fat proportion by
using the near-infrared spectra of 39 milk specimens obtained by SCiO device
recorded between 740 and 1070 nm in Figure 1 and originally considered in
Riu et al., 2020. This dataset has been used Di Brisco et al., 2023, where some
functional parametric and nonparametric regression models have been applied
and compared.

One can note that, if full nonparametric approaches are exploratory but suf-
fer of dimensionality problems, parametric models are easily interpreted but
not flexible. A useful alternative in this research field can come from the semi-
parametric regression approaches that combine flexibility and interpretability.
In particular the class of Single Functional Index Model (SFIM) defines a rela-
tionship between the functional predictor X and the real–valued random vari-
able Y through an unknown real link function g that acts on a projection of the
functional predictor along an unknown direction θ, subject to an identifiabil-
ity condition: Y = g(⟨X ,θ⟩)+E , where ⟨X ,θ⟩=

∫
X (t)θ(t)dt, ∥θ∥2 = 1 and



θ(t) > 0 for a fixed t. A methodology which combines a spline approxima-
tion of the functional coefficient θ and the one-dimensional Nadaraya-Watson
approach to estimate the link function g are proposed in Ferraty et al., 2013.
The main advantage in using SFIM is the possibility to work in the one di-
mensional analogue of an infinite dimensional problem, through the projective
strategy, and hence to visualise an estimate of g from the observed data and
hence suggests the nature of the relationship of X and Y . This allows to pos-
tulate a target link function g0 and test its compatibility with the observed data
at a significance level.

The new test procedure in the SFIM context based on the conditional mo-
ment test approach has been defined and analyzed in Chan et al., 2023. This
work aims to summarize the main features of such a test and apply it to the
spectrometric example. In particular, after illustrating the basic principle of
the test in Section 2, the application to the real data is discussed in Section 3.

2 The test principle

Consider the SFIM and define G0 = {gβ

0 : R → R,β ∈ Rd+1}, where gβ

0 is a
known function depending on the parameter β= (β0,β1, . . . ,βd)∈Rd+1, d ≥ 1
integer. Consider then the following hypothesis:

H0 : g ∈ G0 vs. H1 : g ∈ G1

where G1 is a set of real functions gβ

1 such that G1 ∩G0 = Ø.
Define E = Y − gβ

0 (⟨X ,θ⟩) and E [E |X ] = g(⟨X ,θ⟩)− gβ

0 (⟨X ,θ⟩). The
quantity Q =E [EE [E |X ]w(X)] , where w(X)> 0 is a weight function, is null
under H0 and strictly positive under H1.

To implement the test procedure, an empirical version of Q has to be de-
rived from a sample (Xi,Yi), i = 1, . . . ,n drawn from (X ,Y ). Assuming the
projection random variable ⟨X ,θ⟩ admits a positive probability density func-
tion fθ, then a possible choice for the weight function is w = fθ. By taking a
Nadaraya–Watson type nonparametric kernel estimate of E [E |X ] at the point
Xi and a cross–validated kernel estimate of fθ, the empirical version of Q is:
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, where β̂ is an estimate



for β. The standardised test statistic is Tn = n
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To compute the p-value and to derive the critical region of the test at the sig-
nificance level α, the derivation of the asymptotic null distribution for Tn is
required. Under appropriate assumptions, one can prove that Tn ∼ N (0,1), as
n diverges. Then one rejects the null hypothesis if Tn ≥ z1−α, where z1−α is
the (1−α)-th quantile of the standard normal distribution. For further details,
interested readers are invited to consult Chan et al., 2023.

3 Application to spectrometric data

Consider the SFIM involving the original spectra as covariate and the quantitiy
of fat as response. Some attempts with first and second derivatives of the spec-
trometric curves have been performed but with a deterioration in the quality of
the prediction (and this is coherent with the models in Di Brisco et al., 2023).
In Figure 1 the estimates θ̂ and ĝ of the direction θ and link function g are
plotted. Observing the shape of the former, it seems that the relevant part of
the spectrum in predicting the fat content is between about 950 and 1070 nm,
whereas the latter suggests that a linear specification for the model seems not
reasonable. For what concerns the prediction ability of that model, one used
the RMSE, that is ∑i (yi − ŷi)

2 /∑i y2
i , and the MAPE, that is ∑i |yi − ŷi|/yi; the

first index equals 0.015 and the second one 0.096.
At this stage it is possible to carry out the specification test; in particular

the following polynomial and logistic null models are considered:

H p
0 : g0 (u) = β0 +

p

∑
j=1

β ju H log
0 : g0 (u) = eβ0+β1u/(1+ eβ0+β1u)

where u =
〈

x, θ̂
〉

and p = 1,2,3 (corresponding to linear, quadratic and cu-
bic link espectively). Since all the real parameters β j are unknown, they are
estimated by an OLS approach under the null hypothesis. The p-values cal-
culated by using the asymptotic null distribution are: 0 for H1

0 , 0.035 for H2
0 ,

0.207 for H3
0 and 0 for H log

0 . One can conclude that the linear, quadratic as
well as logistic assumptions on the link function are not compatible with the
empirical evidence, whereas a cubic link could be a good choice to model



the relationship. Therefore, a model to predict the content of fat Y in milk
specimens starting from the spectrometric curve X can be specified as follows:
Y = 0.014−0.69 · ⟨X , θ̂⟩+10.6 · ⟨X , θ̂⟩2 −33.2 · ⟨X , θ̂⟩3 +E .
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Figure 1. Milk spectra recorded using SCiO device (top), Estimated direction θ (bot-
tom left) and estimated link function (bottom right) for the SFIM.
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