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ABSTRACT: Decision trees are a popular statistical learning algorithm for classifi-
cation and regression that recursively split the data based on the most informative
characteristics. Unfortunately, they do not have a high predictive power with respect
to other statistical learning methods. To enhances their performances, this paper pro-
poses a support vector machine approach to create oblique decision trees for regres-
sion problems. In this novel model, the split at each node is made through a weighted
support vector machine classifier with a linear Kernel that minimizes the deviance of
the split. We test the model with respect to the usual CART on four public datasets
with numerical predictors on three global metrics: Root Mean Squared Error, Mean
Absolute Deviation, and R2. The results of repeated cross-validation show that the
novel model can overperform the usual Decision trees.
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1 Introduction

Decision trees (DTs) are a popular statistical learning algorithm for classifi-
cation and regression. They can be easily viewed and interpreted by humans,
making them valuable assets in data. A DT is a tree structure in which each
internal node represents a decision based on a specific characteristic of the
data, and where each leaf node represents a prediction or result. The algo-
rithm works by recursively splitting the data based on the most informative
characteristics until a stopping criterion is met. Unfortunately, DTs are prone
to overfitting and do not have a high predictive power with respect to other
statistical learning methods. To improve their performances oblique DTs were
introduced (Breiman, 2017), and lately, they are gaining interest in the re-
search community. Unlike traditional DTs, in which each node corresponds to
a single variable split and the separation between the branches is orthogonal
to the axes, oblique DTs allow the definition of separation hyper-planes that
can be inclined with respect to the Cartesian axes. In other words, oblique



DTs use linear combinations of multiple variables to define decision bound-
aries. However, to find the linear combination of variables to construct the
best-suited hyperplane is an NP-hard problem, in fact, to split a node with n
observations using an axis-aligned CART, an exhaustive search would require
no more than n · p evaluations. On the other hand, oblique CART would require
a significantly larger number of evaluations, specifically 2p

(n
p

)
. Nevertheless,

oblique DTs have the advantage of generally building smaller trees with better
accuracy compared with axis parallel trees (Wickramarachchi et al., 2016). In
contrast to the Breiman’s approach, we introduce Support Vector Machine Re-
gression Oblique Tree (SVM-ROT). In the Breiman method, the algorithm op-
timizes the coefficients of oblique splits based on a coordinate descent method.
This is an iterative approach where each coefficient is optimized individually
while keeping the others fixed. On the other hand, in SVM-ROT the split at
each node is determined through a weighted support vector machine (SVM)
classifier with a linear Kernel that minimizes the deviance of the split. SVM is
a supervised statistical learning method introduced by Vapnik, 1999 to solve
pattern classification and regression problems, moreover, it can be linear or
nonlinear but is most commonly the former. Essentially, SVM identifies a re-
producible hyperplane that maximizes the margin between the support vectors
of both class labels. To improve the performance of the SVM classifiers, Yang
et al., 2007 suggests adding different weights to observations to different data
points such that the weighted SVM algorithm estimates the best hyperplane
according to the relative importance of the observation in the training data set.
This short paper is organized as follows. Section 2 introduces the model in
detail, in Section 3 the model is tested on 4 datasets and some concluding
comments are reported.

2 Model

SVM-ROT at each node separates the observations given the results of a SVM
classifier. Let us consider N observations characterized by a continuous re-
sponse Y and p continuous features. First, Y is transformed K times into a
dichotomous variable, each time using a different quantile as the threshold for
its partitioning. Then, for each of these dichotomized variables, a weighted
SVM classifier with linear kernel is applied, and the algorithm saves the de-
viance reduction resulting from the two partitions. The algorithm then chooses
the split that has the highest reduction in deviance. The weighting of the SVM
is very important because when the algorithm dichotomizes the target variable
much information is lost. To overcome this problem the absolute values of



the scaled elements of the target variable Y are used as weights in the classi-
fiers. This process assures that the hyperplane takes into account the values
of the original Y . The result of this process will be a set of coefficients w of
length p, and an intercept b, which describe the separating hyperplane. The
hyperplane will be then expressed in a decision rule similar to that one of the
usual DT, creating the pair of half-spaces: R1(w,b) = {X | w ·x+b ≤ 0} and
R2(w,b) = {X | w ·x+b > 0}, where X is the matrix of the p predictors.

The result will be the division of the feature space into two subsets. This
operation is then applied in a recursive binary partition manner until a certain
criterion is met. These stopping criteria can be the number of elements in a
leaf, the number of elements in a node, or the complexity parameter given by
the ratio between the resulting deviance after the split and the deviance in the
parent node.

3 Application to real datasets

SVM-ROT has been applied to several real datasets using the software R (R
Core Team, 2022). The first is “Body Fat” dataset from Penrose et al., 1985.
In this dataset, the response variable is the percentage of body fat and the
eleven predictors represent several physiologic measurements related to 252
men. The second dataset, called BCF, comes from Grisoni et al., 2016, here
the target variable is the Bioconcentration Factor in log units of 779 chemicals,
while the independent variables are nine molecular numerical descriptors. The
third data set is Auto MPG dataset from Dua & Graff, 2017 consisting of 398
observations, but in which only the seven numerical predictors have been used.
Finally, the last dataset is from Ancell, 2021, it is made up of 413 instances
and contains the 50 year ground snow load at a variety of measurement stations
together with four numerical predictors. The performance of the SVM-ROT
is compared to the one of a CART. Both models were tuned for the complex-
ity parameter with 10-fold cross-validation, and the most parsimonious model
with the one standard error rule was chosen. Then we performed 10 times re-
peated 10-fold cross-validation. The overall performance is computed by Root
Mean Squared Error (RMSE), Mean Absolute Deviation (MAD), and R2. For
the first two metrics, lower values result in better predictive models. However,
RMSE is more sensitive to high errors. R2 is the proportion of variance ex-
plained by the model, this means that a value close to one indicates that the
model explains most of the variance. Table 1 shows the results of the experi-
ments.

In BCF and MPG SVM-ROT shows a better performance with respect to



Body Fat BCF MPG Snow
SVM-ROT CART SVM-ROT CART SVM-ROT CART SVM-ROT CART

RMSE 5.385(0.151) 5.396(0.198) 0.776(0.008) 0.795(0.008) 3.245(0.071) 3.367(0.073) 1.506(0.0521) 1.445(0.058)

MAD 4.422(0.109) 4.430(0.170) 0.597(0.008) 0.613(0.005) 2.404(0.061) 2.460(0.068) 0.898(0.027) 0.940(0.027)

R2 0.604(0.022) 0.602(0.031) 0.674(0.008) 0.656(0.005) 0.833(0.008) 0.819(0.008) 0.861(0.007) 0.871(0.011)

Table 1. Results of SVM-ROT and CART for all four dataset. The means (standard
errors) of the 10-times 10-fold cross-validation of the three metrics are reported. In
bold the best model for each metric and dataset.

CART for all three global metrics. Instead, in “Snow” the improvement is
only for MAD, whilst for “Body Fat” the results are almost identical. Nev-
ertheless, as at each node, the SVM-ROT splits the predictor space using all
the covariates at once, so SVM-ROT is prone to overfit the data. In the future,
it will be then interesting to use this novel model with an ensemble learning
approach such as random forests or gradient boosting, or to apply a kind of
feature selection at each split.
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