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ABSTRACT: This contribution presents a classification strategy, based on widely avail-
able statistical tools, for detecting time series that have changed flow regime in recent
years. The results from the analysis of 221 time series of unregulated streamflows in
the United States is discussed.
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1 Introduction

The climate change often affects the variability and persistence of river dis-
charges that may show an alterated balance between snow and rainfall and an
intensification of extreme hydrological events. Such climate-induced hydro-
logic changes may have relevant consequences on the freshwater ecosystem
(Dhungel et al. , 2016). The search of simple but effective tools for river
regime classification is still a topic of interest in order to investigate variations
in flow regimes and evaluate future climate impact (Yang & Olivera, 2023). In
this article, we present a procedure for classifying streamflow time series ac-
cording to their underlying dynamic structures. We illustrate our approach an-
alyzing streamflow data from 221 unregulated catchments in the United States
(Newman & al., 2015).

2 Methods

Streamflow time series are typically characterized by a marked seasonal pat-
tern, due to the alternating of wet and dry periods, and a persistent or long term
component. The seasonality often appears as a deterministic component in the
spectrum. This makes the time series unsuitable for stochastic modelling, be-
cause the marked seasonal pattern obscures the other dynamic components. At
this stage, we assume that the effect of data skewness, calendar effects, out-
liers and missing value have already been removed by preliminary analysis



and transformations and that the time series Wt has zero mean. Thus, Wt is
described by the harmonic regression model:

Wt = ∑[s/2]
j=1 [αw j sin(2π jt/s)+βw j cos(2π jt/s)]+Zt (1)

where s denotes the seasonal period, and Zt follows a stationary Autoregressive
model, AR(p):

φ(B)Zt = at , (2)

where at is a Gaussian White Noise (WN) process with constant variance
σ2

aw. It is well known that any process with an absolutely continuous spec-
trum can be adequately approximated by an Autoregressive model, then (2)
describes both short and long memory stationary components. The order p
can be selected by BIC criterion, so that parsimonious models are preferred.
Thus, the time series Wt is characterized by the coefficients estimated by GLS:
δ̂w = (α̂w1, ..., α̂wk, β̂w1, ..., β̂wk)

′ and φ̂w = (φ̂w1, ..., φ̂wp)
′.

Given two independent time series Wt and Yt , the dissimilarity will be mea-
sured by comparing the seasonal and non-seasonal coefficients separately be-
cause, as already mentioned, the two components (seasonality and inertia) have
a very different weight in determining the dynamics of the series.

Seasonal components are compared by evaluating the Mahalanobis dis-
tance: Mwy = (δ̂w − δ̂y)

′(σ2
awΩw + σ2

ayΩy)
−1(δ̂w − δ̂y), where σ2

a•Ω• is the

covariance matrix of δ̂•. The dissimilarity between the residual components
is measured by means of the AR metric (Piccolo, 1990; Corduas & Piccolo,

2008): Dwy =
√

∑∞
j=1 (φw j −φy j)

2.
Then, the corresponding distance matrices M and D are objects of a clus-

tering algorithm in order to identify groups of time series having similar sea-
sonal pattern and different level of inertia. Here, we use the complete linkage
method because it does not require the preliminary specification of the cluster
number and produces compact clusters.

3 Results

The analysis has been conducted on 221 time series of mean daily discharge
(feet3/sec) of unregulated streamflows in the United States (available from
the US Geological Survey at https://waterdata.usgs.gov/nwis/). Two non over-
lapping reference periods have been considered: from 1930.10.01 (or later, de-
pending on data availability) to 1974.09.30 and from 2000.10.01 to 2021.09.30.



The complete link clustering of the Mahalanobis distance matrices, M ,
evaluated in the two reference periods, leads to the identification of six clusters.

Figure 1: Average daily discharge of clustered time series (1st period-left pan-
els; 2nd period-right panels)

In particular, the clusters describe: strong fall/spring regime (G1: mostly
in the North Atlantic and Pacific NW coast); intermittent winter/spring regime
(G2: mid Atlantic coast and central valleys); intermittent regime (G3: Gulf
coast); weak winter regime (G4: upper Great lakes and Northern Great Planes);
melt regimes (G5: mostly in the Rocky mountain and Northern Great planes);
strong winter regime (G6: mostly in the NW coast). Fig.1 illustrates the aver-
age daily discharge of the series belonging to each cluster in the two reference
periods. The fundamental features of the seasonal patterns are rather stable in
the two periods, but a number of series (33%) have changed their class mem-
berships. Changes are due to various factors: the anticipation of the seasonal
peak due to early snow-melt, the increase of the winter rainfall, the increase of
dry periods and flashy peaks. Moreover, the analysis of residual components
by means of the AR metric identifies three clusters of series with increasing
level of inertia (low, moderate, high). The parametric spectral densities of the
cluster centroids help to define these level of inertia. However, the long term
dynamics does not change remarkably in the two periods. This may be due to
the fact that the residual components are heavily affected by specific physio-
characteristics of the basins (for example, the slope).

At the end of the procedure, each time series is characterized by two labels
specifying the seasonal regime and the level of inertia. These features can be
summarized in a two-way table. In the period 2000-2021, there are 13 clusters



(Table 1) and most rivers show an intermittent regime with peaks in winter
or spring and a low/medium level of inertia. The intermittent regime gather
numerous series that have changed their class memberships in recent years.

Table 1: Final classification for the dataset observed the period 2000-2021

Seasonality Inertia
high medium low

strong fall/spring 2 17 6
intermittent winter/spring 0 72 61

intermittent 0 6 6
weak winter 0 10 5
snow-melt 0 15 5

strong winter 0 15 1

4 Final remarks

The results that we have achieved using widely applicable statistical tools pro-
vide a useful basis for further discussion about the relationships of streamflow
regimes with physiographic and climate indices, and for determining the fu-
ture regime changes according to simulated scenarios from models driven by
climate data.
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