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Abstract In several observational contexts where different raters evaluate a set of
items, it is common to assume that all raters draw their scores from the same un-
derlying distribution. A common distributional assumption in this setting is that
hierarchical effects as independent and identically distributed from a normal with
the mean parameter fixed to zero and unknown variance. The present work aims to
overcome this strong assumption in the inter-rater agreement estimation by assign-
ing a Dirichlet Process (DP) mixture as the hierarchical effects’ prior distribution. A
new semi-parametric index λ is proposed to quantify raters polarization in presence
of group heterogeneity. The model is applied to a real context.
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1 A semi-parametric model proposal

Several methods and statistical models that aim to account for inter-rater variability
have appeared in the literature [3]. Despite the popularity of work on this issue, less
attention has been paid to possible latent dissimilarities among raters within inter-
rater agreement studies[4]. From a psychometric point of view, it can be appealing
to assess the extent to which different raters could have different latent opinions for
specific rating processes.
To this aim, Hierarchical Generalized Linear Models (HGLM) are a natural choice,
since they can account for the individual-variability specifying the effect of m co-
variates. The HGLM assumption regarding the distribution of the hierarchical ef-
fects is crucial in characterising different possible clusters or latent patterns of het-
erogeneity among raters. To this aim a Dirichlet Process Prior is specified over the
hierarchical effects and the model is specified as follow.
The rating yi j ∈ {0,1} of the item j ∈ {1, ..,J} carried out by rater i ∈ {1, .., I},
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considering a set xi j and zi j of covariates for the different effects, respectively, is
modelled as follows:

P(yi j = 1) = F(xi jβ + ziui + εi j),

ui|µc,Q ∼ Nq(µc,Q),

µc|G ∼ G,

G ∼ DP(α,G0).

Here F(·) is a cumulative distribution function (e.g., Normal or Logistic), Nq(·)
stands for a q-variate normal distribution, β is a p× 1 vector of non hierarchical
effects and ui is a q vector of hierarchical effects. Here, DP(α,G0) is a Dirichlet
Process Mixture with α > 0 precision parameter and base measure G0. It is assumed
that ui and εi j are independent.
The hierarchical effects distribution considering a stick breaking construction of the
DPM might be then specified the as follow:

ui|µc,Q,α
iid∼

R

∑
c=1

πcNq(µc,Q), i = i, . . . , I

µc
iid∼ G0,

πc = νc ∏l<c(1− vl),

vc
iid∼ Be(1,α), c = 1 . . . ,R.

Where R ∈ N and large enough [1].

1.1 The λ index

The marginal posterior distribution of the hierarchical effects in the model outlined
above captures information about the dissimilarity or disagreement among raters
(on the assumption that the model captures the data adequately). To this end the
full estimated distribution of u resulting from the model might be useful. At each
iteration t, the density of u is given by the corresponding mixture model given the
parameters at iteration t. Following the formulation of [1] , the set of modes and
antimodes (i.e., the least frequent values between two consecutive modes) is iden-
tified; the latent disagreement λ is then defined as the log ratio between the mean
density of the modes and the that of the antimodes:

λ = ln


1
M

M

∑
m=1

fu(γm)

1
A

A

∑
a=1

fu(ζa)
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where M is the number of modes γm and A the number of antimodes ζa of f (u).
Larger values of λ indicate strongly multimodal distribution of the hierarchical ef-
fects, whereas smaller values are evidence of weak multimodality, thus the esti-
mated hierarchical effects are less concentrated. In this sense this index is informa-
tive about the latent group polarization. Which in this context is assumed as a way
of disagreement.

2 Posterior sampling and numerical example

As a numerical example a real data set from the social sciences context was anal-
ysed. Fifty-two personnel selectors were asked to rate 40 different applicants per
rater on a binary scale (0=not selected, 1=selected). In this case, yi j is the binary
score given to applicant i by selector j. Selectors’ years of experience and appli-
cants’ age were two covariate considered in the model. The effect of the latter was
specified as hierarchical with the distributional assumption outlined in the previous
section.
Since most of the parameters in the model have conjugate prior distributions a
blocked Gibbs sampling algorithm was used for the posterior sampling. An un-
derline latent variable approach accounting for the probit link function of the
HGLM was adopted. Weakly informative priors were elicited following [2]. As
suggested by [1], in order to estimate the density of u the approach of monitor-

ing u iid∼
R

∑
c=1

πcNq(µc,Q) at each iteration over a dense grid of u values was adopted.

At each iteration t, the density of the parametric mixture was computed at each
point of the grid. As result of some prior predictive check, a dense grid of 481
equally-spaced values from -12 to 12 (i.e., with a fixed interval of 0.05) was used to
monitoring the mixture density of the hierarchical effects. The maximum number of
mixture component R through the stick-breaking construction was fixed to 25. In all
the computations 80.000 iteration with 8.000 burn-in were used, the Markov chains
were thinned the by a factor of 80, resulting in samples of size 1000.
As shown in table 1 selector’s years of experience has a positive effect on th proba-
bility of being selected. The marginal posterior distribution of the hierarchical effect
of applicant’s age showed a bimodal distribution. More precisely the effect of this
predictor is positive for a subgroup of the overall sample, whereas it is negative
in the other one. The presence of this heterogeneity is shown also by the λ - index
which HPD interval is far from zero and includes large values.
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(a)
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Fig. 1 95% HPD intervals of the grid density (a) and λ -index.

Table 1 95% HPD intervals
95% HPD intervals

β (1.58,3.33)
bβ (−0.56,3.41)
σBβ

(0.16,4.17)
µ0 (−0.28,0.75)
σD0 (2.14,5.25)
Q (0.09,0.29)
σε (0.86,3.08)
α (6.69,16.06)
Grid density (−4.15,−0.5)∪ (0.15,4.50)
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