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ABSTRACT: An empirical analysis on players’ position on the field throughout a soc-
cer match is presented. For this purpose, a Bayesian mixture of experts model is de-
fined, allowing for flexible specification of concomitant covariates on the component
weights as smooth functions represented by cubic splines.
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1 Introduction

Pettersen et al. (2014) present a dataset of body-sensor traces and correspond-
ing videos from three professional soccer games captured in late 2013 at the
Alfheim Stadium in Tromsø, Norway. Tromsø - Stromsogodset is selected for
this study, since it is the only one which is valid for the national competition.
This game was played on November 3rd, 2013, and it ended with no scores.
Player data, including field position, are sampled at 20 Hz using the ZXY Sport
Tracking system.
The aim of this analysis is to study how a player’s position is affected by a
teammate’s one and possibily identify a finite number of different phases of
the game. Obviously, this relationship depends on many factors, such as the
two player’s role and which area of the field they are supposed to cover. For
this reason, this study focuses on a couple of players playing close to each
other.

2 Model specification

The study concentrates on the player covering the right full-back position,
identified with tag 9, and assuming that his longitude and latitude (y1 and y2,



respectively) can reasonably be approximated by a bivariate Gaussian distribu-
tion. Then, the two-dimensional location of the centre-back playing closer to
him, Player 13, are taken as concomitant covariates (x1,x2). Let c be a vector
of latent variables such that, for each time i, ci = g if i belongs to cluster g.
Conditioning on ci and xi, it is assumed that yi follows a Gaussian distribution
with vector of means µci and positive definite covariance matrix Σci . Hence,
the conditional density of yi given xi can be written as the following mixture
of bivariate Gaussians:

f (yi|xi) =
G

∑
g=1

πg(xi) fMV N2(µg,Σg), (1)

with fMV N2(µg,Σg) being the density of a bivariate Gaussian distribution and
component weights πg(xi) = Pr(ci = g|xi) > 0, so that ∑

G
g=1 πg(xi) = 1, for

i = 1, . . . ,501 and g = 1,2, . . . ,G. To allow for flexible specification of such
probabilities, a similar methodology to that proposed by Berrettini et al. (2021)
for latent class models is adapted to the continuous case. More specifically,
prior probabilities are expressed as smooth functions of the covariates repre-
sented through Bayesian P-splines (Lang & Brezger, 2004), and estimation is
carried out following the data augmentation scheme suggested by Früwirth-
Schnatter et al. (2012). Regarding the parameters of the component condi-
tional distributions of the mixture, Gaussian and inverse Wishart priors are
respectively assigned to µg and Σg, as in Marin et al. (2005). The resulting
MCMC algorithm does not require any Metropolis-Hastings step.

3 Soccer player positions data

To carry out the analysis, some assumptions are made. In particular, the obser-
vations are assumed to be independent across time: to make this assumption
more realistic, the data are thinned out to 501 observations over more than 90
minutes of play, leading to a distance of approximately 10 seconds between
each pair of consecutive observations. Since between the first and the second
half of the game the direction of play changes, preparing this dataset requires
a 180◦ rotation of the locations observed during the second half. The two di-
mensions of the location of the centre-backs, x1 and x2, representing the long
and short side of the field, respectively, are assumed to have an additive effect
on the log-odds of the component weights. For the analysis, the algorithm is
run for fixed G ranging from 1 to 6. The results produced by the best mod-
els, in terms of AICM, are selected. Observations are allocated into the G
components using the maximum-a-posteriori rule.
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Figure 1. Locations of Player 13 (left plot) and Player 9 (right plot). Different colors
and dot symbols correspond to different clusters.

4 Results

The best model according to AICM has G = 3 components. Figure 1 shows
the locations of the two players during the game, allocated according to the
3-component ME model. The clusters does not seem well separated. Indeed,
without considering the position of Player 13, the best finite mixture of Gaus-
sians with constant component weights suggests the presence of a single com-
ponent. These clusters may be interpreted as phases of the game: in particular,
the blue dots identify the defensive phase, the green triangles the offensive one,
while the red square indicate an intermediate phase. The intermediated phase,
originally associated to the first component (in red), is taken as the reference
to define the log-odds of mixture weights. The splines’ coefficients are trans-
formed accordingly, and, due to space limitations, only the estimated effect of
the location of Player 13 on the probability of the defensive phase of Player 9
is reported in Figure 2. The clusters differ mainly with respect to the long side
(x1) of the field, while the location on the short side seems to be less impactful.
Lower values of the longitude for Player 13 seem to lead to a higher probabil-
ity that Player 9 is in the defensive phase, implying him covering the backfield
too. This probability drops as x1 grows, increasing the odds of the offensive
phase, characterized by a higher longitude and variability. A huge amount of
variability of the estimated effects can be noticed in the plots, especially when
the functions reach large absolute values that correspond to 0 or 1 on the scale
of the probability. This might be also due to the fact that the locations of the
players are not uniformly distributed along the field. It is worth mentioning
that this uneven distribution of the observations seems coherent with the spe-
cific roles of the two players considered in this analysis.



0 20 40 60 80 100

−
40

−
20

0
20

40

x1

lo
g−

od
ds

 2

estimate

95% pointwise credible interval

0 10 20 30 40 50 60 70

−
40

−
20

0
20

40

x2

Figure 2. Estimated effect (and 95% pointwise credible interval) of the location of
Player 13, (x1,x2) on the log-odds of the mixture weights, for Cluster 2 .
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