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ABSTRACT: The varying-thresholds model is a new modelling approach capable of
estimating the whole conditional distribution of a response variable in a regression
setting. The varying-thresholds model can be used for continuous, ordinal and count
responses. Conditional quantiles estimated through the varying-thresholds method are
compared to those of quantile regression. The comparison is based on models’ sim-
ulations to assess the performance of the two methodologies regarding the coverage
and width of prediction intervals. The simulation study encompasses eight different
settings with several functional forms and types of errors. In addition, a discrete vari-
ation of the continuous ranked probability score is proposed as a way to choose the
best link function for the binary models used to estimate the varying-thresholds model.
The comparison shows that the varying thresholds model performs better whenever the
functional form of the true data generating model is non-linear.
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1 The Varying-Thresholds Model

The varying-thresholds model is a novel methodology proposed by Tutz, 2021
that can estimate the whole conditional distribution of a response variable in a
regression setting. Estimating the conditional distribution allows one to obtain
values of interest such as the conditional expected value, standard error, or
quantiles. The general form of the Varying-Thresholds Model can be written
as follows:

P(Y > θ |x) = F(η(θ,x) ) (1)

where Y is the response variable, x is a vector of covariates, F is a distribution
function and η(θ,x) is a predictor function. The predictor function can take



Table 1. All types of data generating models used in the comparison between quantile
regression and the varying-thresholds model. Every model comprise a single covariate
and a response variable.

Model Functional Form
Error

Distribution

Covariate

Distribution

Model 1 β0 +β1x εN ∼ N(0,1) X ∼ N(5,1)

Model 2 β0 +β1x εχ2 ∼ χ2(d f = 3) X ∼ N(5,1)

Model 3 β0 +β1x εN ∼ e(x−5) ·N(0,1) X ∼ N(5,1)

Model 4 β0 +β1x εN ∼ e(5−x) ·N(0,1) X ∼ N(5,1)

Model 5 β0 +β1x+β2x2 εN ∼ N(0,1) X ∼U(−2,12)

Model 6 β0 +β1x+β2x2 +β3x3 εN ∼ N(0,1) X ∼U(−3,8)

Model 7 β0 +β1x
εCN ∼ 0.9N(0,5)+

0.1N(50,5)
X ∼ N(0,5)

Model 8 β0 +β1x+β2x2 εt ∼ t(d f = 3) X ∼U(0,6)

many forms: linear, non-linear or non-parametric. In this work, we consider a
single covariate x and adopt a linear specification η(θ,x) = βθ

0 +βθ
1x. The re-

sponse variable Y can be ordinal or continuous. The varying-thresholds model
is estimated using a series of binary regression models: for every threshold θ

in a prespecified grid of values, the response variable Y is dichotomized to be-
come binary, then a model is fitted to the data as described in equation 1. This
method allows for the estimation of varying coefficients, indexed by θ, that are
then used to compute the conditional distribution of the response variable *.

2 Data Generating Models and Simulation Settings

The varying-thresholds model and quantile regression are compared using a
variety of error assumptions and different functional forms. Quantile regres-
sion is fitted as QY |x(θ) = β0(θ) + β1(θ)x, likewise the varying-thresholds
model is estimated using the predictor function η(θ,x) = βθ

0 + βθ
1x. All the

data generating models are reported in Table 1. Model’s errors mimic the

*Note that, even if the predictor is linear, the binary response model is repeatedly fitted with
different thresholds, thus the regression function is estimated in a data-driven way.



latent response approach , i.e. Y ∗ = f unctional f orm+ error and Y = 1 if and
only if Y ∗ > 0, e.g., a model with normally distributed error corresponds to
the probit model. The errors are always standardized to ensure comparability
of the regression coefficients. Quantile regression and the varying-thresholds
model are compared through the empirical coverage of their estimated predic-
tion intervals computed at a (1−α) = 80% level conditioned on a given value
of X = x. This interval is computed by estimating the first and ninth condi-
tional decile. The empirical coverage is calculated through a simulation. The
simulation has 1000 iterations, each time a different sample of n = 1000 ob-
servations is drawn from the generating model. After each iteration the two
methodologies compute the intervals; then, a new observation is sampled from
the generating model; the proportion of times the new observation falls within
the prediction interval is the empirical coverage level. Quantile regression is
estimated with the R package quantreg, Koenker, 2022.

3 Simulation Results and Link Selection

Table 2 reports the results of the simulations for prediction intervals condi-
tioned on the median value of X . The comparison shows that the varying-
thresholds model performs better whenever the functional form of the true data
generating model is non-linear. The lack of assumptions about the functional
relationship makes the varying-thresholds model a very flexible approach, ca-
pable of detecting non-linear effects without specifying a non-linear effect in
the predictor function η(θ,x). If the functional relationship between variables
is known in advance and it is correctly specified quantile regression generally
yields better results. The choice of the link function for the binary models used
to estimate the varying-thresholds model is crucial; a discrete approximation of
the continuous ranked probability score (CRPS), Jordan et al., 2019; Gneiting
& Raftery, 2007, is used to select the best link function. Both out-of-sample or
in-sample approaches seems to be valid with this metric. In Model8 the robit
link function with three degrees of freedom is selected through the CRPS and
yields better results than other links.

4 Conclusions

The varying-thresholds model performs better, regarding prediction intervals,
than quantile regression when there are non-linear effects and the relationship
between variables is not correctly specified. Link function selection for the
binary models’ estimation method can be facilitated using the CRPS. Areas of



Table 2. Empirical coverage and average width of prediction intervals at 80% level on
1000 simulations from Model1−8 at the median value of X. The varying-thresholds
model is fitted with probit link function except for Model8 where it is fitted with robita

link function with three degrees of freedom.

Model
Quantile Regression Varying-Thresholds Model

Coverage Avg. Width Coverage Avg. Width

Model 1 0.783 2.562 0.783 2.567
Model 2 0.820 5.670 0.822 5.788
Model 3 0.926 3.759 0.930 4.124
Model 4 0.937 3.755 0.939 4.121
Model 5 0.704 4.651 0.865 3.306
Model 6 1.000 8.559 0.883 3.354
Model 7 0.801 33.221 0.844 37.694
Model 8 0.649 7.964 0.810 3.442
aThe robit link function is related to the t-distribution, see Liu, 2004.

future research may include different types of response variables such as count
and ordinal data.
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JORDAN, A., KRÜGER, F., & LERCH, S. 2019. Evaluating Probabilistic
Forecasts with scoringRules. Journal of Statistical Software, 90(12), 1–
37.

KOENKER, R.W. 2022. quantreg: Quantile Regression. R package version
5.94.

LIU, C. 2004. Robit Regression: A Simple Robust Alternative to Logistic and
Probit Regression. John Wiley & Sons, Ltd. Chap. 21, pages 227–238.

TUTZ, G. 2021. Flexible Predictive Distributions from Varying-Thresholds
Modelling. arXiv:2103.13324.


