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ABSTRACT: For an accurate evaluation of the harmful impacts of pollution on hu-
man health, confounding variables must always be taken into account. Unfortunately,
it oftentimes happens that some confounders might result unmeasured, hence, within
a regression framework, the parameter that represents the exposure’s effect might no
longer be recoverable. In this paper, the unmeasured confounder is represented by
a linear combination of basis functions, a technique that has been used in the spa-
tial confounding literature, and that we expand to spatio-temporal designs. To reduce
dimensionality and confounding bias, spike-and-slab priors are assumed on basis co-
efficients.
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1 Introduction

The principal objective in environmental epidemiology is to evaluate whether
exposure to a pollutant has adverse health consequences. To this end, the re-
lationship between exposure and outcome variables can be expressed in re-
gression terms. An accurate evaluation of the relationship of interest requires
that all variables correlated with both exposure and outcome (known as con-
founders), such as meteorological variables, should be included in the model
as additional regressors (Dominici & Peng, 2008). However, data about some
confounders could result not available because of, for example, budget con-
straints. If the model fails to account for confounding, it would be impossible
to recover the parameter of interest. The estimator for the exposure’s effect
would then become biased, and its bias is known as confounding bias in the
epidemiological literature (Dominici & Peng, 2008).

While smooth functions of calendar time are usually included in models for
time-series data (e.g., see Dominici & Peng, 2008), in purely spatial settings,
the simplest and more appealing remedy to the spatial confounding problem



is to add into the model a spatial random effect. However, Reich et al., 2006
show that doing so distorts inference on the effect of interest and leads the prac-
titioner to draw incorrect conclusions. Different other solutions are reviewed
by Reich et al., 2021 and Urdangarin et al., 2022. To our knowledge, relatively
few authors consider confounding adjustment in spatio-temporal designs. Re-
ich et al., 2021 reviews spatio-temporal methods as well to account for un-
measured confounding under causal inference hypotheses. More recently, two
approaches in the spatial confounding literature are extended to account for
temporal dependence as well (Adin et al., 2023; Prates et al., 2022). In the
next Section, we discuss a different approach wherein, extending the work by
Valentini et al., 2022, unmeasured confounding is accounted for by including
spatio-temporal basis functions into the regression model. We also impose a
prior structure on the basis coefficients that encourages sparsity.

2 The Proposed Model

Consider a spatio-temporal process {Y (s, t) : s ∈ D, t = 1,2, . . . ,T}, defined
for every location, s, over a continuous spatial domain D ⊆ R2, and for dis-
crete time periods t = 1,2, . . . ,T . Assume that it represents a health outcome
observed at a finite set of locations, {s1, . . . ,sN}, for the entire study period.
Moreover, suppose that X(s, t) and Z(s, t) are two correlated Gaussian spatio-
temporal processes representing the exposure (observed at the same spatial
locations and time instants as the outcome) and the unmeasured confounder,
respectively. Assuming that the distribution F is a member of the exponen-
tial family, and that realizations are conditionally independent, it is possible to
specify the following hierarchy, for i = 1, . . . ,N and t = 1, . . . ,T :

Y (si, t)
ind∼ F(µ(si, t),φ) (1)

g(µ(si, t)) = β0 +βxX(si, t)+Z(si, t)+ ε(si, t) , (2)

where µ(si, t) = E[Y (si, t)], φ is a scale parameter, g(·) is an opportune link
function, and ε(si, t) represents a zero-mean stationary Gaussian process with
realizations mutually independent in time but correlated in space such that the
spatial covariance structure is defined by a parametric function with parameter
vector θθθ, that is Cov(ε(si, t),ε(s j, t)) = C(|si − s j|;θθθ) for i, j = 1, . . . ,N. The
primary aim of the analysis is to correctly recover the regression coefficient of
the exposure, βx, while controlling for confounding at the same time.



Figure 1. Boxplots representing the estimated exposure effect in the simulation study.
The red line represents the real value, βx = 2.

Thanks to the Karhunen-Loéve theorem (KLT, Banerjee et al., 2014), the
process Z(s, t) can be represented as an infinite linear combination of pairwise
orthogonal basis functions, but, operationally, a reduced-rank representation is
given to it:

Z(s, t)≈
M

∑
m=1

αmψm(s, t) , (3)

where ψm(·, ·) are spatio-temporal basis functions, and αm are expansion coef-
ficients, for m = 1, . . . ,M. These bases are then introduced in Equation (2) in
place of the unmeasured confounder. A necessary condition is that they must
be correlated to both X(si, t) and Z(si, t), so the aforementioned drawbacks
discussed by Reich et al., 2006 could be overcome.

To select the most promising bases and hence obtain a parsimonious model,
we assume spike-and-slab priors (Ishwaran & Rao, 2005) on the expansion co-
efficients. The Bayesian hierarchical specification is completed by assigning
prior distributions to all the other parameters, and a Markov chain Monte Carlo
(MCMC) algorithm is constructed for inferential purposes. To show whether
our model is able to mitigate confounding issues, we set up a simulation study
wherein X(s, t) and Z(s, t) are drawn from their joint distribution, under the
assumptions that Cor(X(s, t),Z(s, t)) = 0.5, and that the second process varies
at spatial and temporal scales coarser than those of the first process. The out-
come is then generated using Eqs. 1–2, where F is the Gaussian distribution.
We then fit a non-spatial (NS) model that does not account for confounding,
and our proposal (denoted as SpSl). Figure 1 synthesize the main results: for
each model, it depicts a boxplot of the posterior means for βx obtained from fit-



ting 100 replicates. The red line represents its true value, βx = 2. The proposed
model can potentially reduce the confounding bias so it should be preferred to
the non-spatial one.

Finally, a more extensive simulation study and real-data applications will
be discussed in an extended version of this paper, wherein several types of
basis functions will be examined as well.
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