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ABSTRACT: In this paper we contribute to the functional data analysis literature by
presenting a scalar-on-function penalized regression model with a multinomial re-
sponse variable which takes into account possible information given by the phase
variability. We also providing a practical application on neuromarketing data.
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1 Introduction

In recent decades, functional data analysis has played an increasingly impor-
tant role in various scientific field, such as medicine, biology, engineering, and,
above all, in the field of statistical research (see Ramsay & Silverman, 1997,
Hsing & Eubank, 2015, Koner & Staicu, 2023 for some reference review).
In this paper, we consider an application to neuromarketing data. Neuromar-
keting (Fisher et al., 2010) is the application of neuroscientific methods to
understand and analyse human behaviour in relation to markets and business
needs. On the basis of different neurometrics, obtained by EEG recordings,
taken on a sample of subjects while watching positive, negative, and neutral
valence videos, to measure the α-asymmetry of the brain (a condition indicat-
ing the subject’s attention to what he or she is observing, see Mazza & Pagano,
2017), the proposed methodology in this article aims to classify the valence
of the video observed. The remaining part od this paper is organized as fol-
lows: in Section 2 we explain our proposal; in Section 3, the results obtained
by analyzing the data introduced above are illustrated; Finally, conclusions are
provided in Section 4.



2 Proposed model

Notation and definitions. By functional data, we mean a realization of a
stochastic process. The functional data, i.e. the predictor, is modelled as:
fitk = fi(tk)+ εitk , with fi ∈ F , where tik is the k-th time point detected on the
i-th subject, with domain [0,1], εitk is an error term normally distributed, and
fitk is an element of L2

[0,1], where L2
[0,1] denotes the space of square-integrable

functions endowed with the standard inner product ⟨g1 , g2⟩=
∫ 1

0 g1 (t)g2 (t) dt
and associated norm ∥g∥ = ⟨g , g⟩ 1

2 . Let us denote by Yi, for i = 1, . . . ,n, a
random variable distributed according to a Multinomial distribution, such that
Yi ∈ {−1,0,1} . Finally, by γ we denote a diffeomorphism, (warping function),
belonging to the set Γ = {γ : [0,1]→ [0,1] | γ(0) = 0,γ(1) = 1} .

The propose model. The multinomial scalar-on-function regression model,
belonging to the class of FGLM (James, 2002), takes the following form

log
{

Pr (Yi = g | fitk)

Pr (Yi = 0 | fitk)

}
= ηig = β0g + ⟨ fi , βg⟩, (1)

where β0g is the intercept of the g-th group and βg ∈ L2 (t) is the regression
coefficient function. Usually, for classification purposes, the phase variability
of functional data is not taken into account, making it unitary during the pre-
processing step through time warping (Ramsay & Silverman, 1997). However,
as some authors show, (e.g., see Tucker et al., 2013) phase variability may
contain useful information for classification purposes. In this setting, time is
expressed as tik = γi (tk), where γi ∈ Γ is the warping function. Hence, the func-
tional predictor to be used in (1) is expressed in a new re-parametrization of
time as fitk = fi (γi (tk)) = f̃i (tk), where f̃i (tk) ∈ L2

[0,1] which only contains in-
formation on amplitude variability. Therefore, to use both phase and amplitude
variability for our prediction problem, model (1) becomes

log
{

Pr (Yi = g | fitk)

Pr (Yi = 0 | fitk)

}
= β0g + ⟨ f̃i , βg⟩+ ⟨γi , θg⟩, (2)

where ⟨γi , θg⟩ is the term contain information on the phase variability. Assum-
ing that, both f̃i and γi are zero mean functions, and using by Karhunen–Loève
expansion (Hsing & Eubank, 2015), i.e., f̃i (t) = ∑

+∞

j=1 Xi jφ
f
j (t), and

γi (t) = ∑
+∞

l=1 Zilφ
γ

l (t) . Model (2) can be expressed as follow:

ηig = β0g +
p

∑
j=1

Xi j⟨φ f
j , βg⟩+

q

∑
l=1

Zil⟨φγ

l , θg⟩, (3)



where Xi j and Zil are the scores, obtained by FPCA. In our application we use
the PACE method (Yao et al., 2005). The model becomes a classic multinomial
regression model on scores, in which there are high dimensionality problems
due to the choice of the number of basis by which to approximate both f̃i and
γi. To overcome the problems from the high dimensional setting, we propose to
minimize the penalised log-likelihood function lλ (b) = l (b)+nλP(b), where
b denote a vector of parameters for both amplitude and phase variability terms,
whereas λ is the tuning parameter and P(b) is the Elastic-Net penalty function
(Zou & Hastie, 2005), i.e.: P(b) = α∥b∥1 +

(1−α)
2 ∥b∥2

2.

3 Application to Neuromarketing Data

The sample consists of n = 60 subjects who participated to a study, in which
each subject was shown a video having positive, neutral, or negative valence.
Through EEG signals, two indices, BIS and BAS (Davidson et al., 1990),
were obtained capable of capturing whether the subject showed attention when
viewing the video. In the preprocessing step, all the curves were aligned. Sub-
sequently, four separate FPCAs for each indicator and related warping func-
tions were made to obtain the scores.

Table 1. Hyper parameter values and model performance metrics on test set.

α λ Accuracy Precisiona Recalla

0.9797 0.0045 0.933 0.944 0.933
a Macro average was used

Table 1 shows the selected hyper-parameter: the selected α parameter allowed
for a very selective model, which leads to a Lasso-type penalty function, how-
ever, the selected λ value is close to zero. Again Table 1 shows how the model
achieves almost perfect classification ability on the test set, and thus excellent
generalization ability.

4 Conclusions

The proposed approach allows the extraction and selection of relevant signals
for classification, also taking into account the possible information of phase
variability through a specific term in the linear predictor. The results show in



Section 3 highlight that the proposed model has achieved an excellent degree
of generalization.
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