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ABSTRACT: High-dimensional data sets, with fewer observations than variables, pose
a challenge for statistical methods, particularly if outlying observations are present.
Several proposals for robust and sparse estimation in the context of multivariate statis-
tical methods are available, together with algorithms for the computation. We present
a unified computational approach based on reformulating the problem as a constrained
optimization problem, also incorporating sparsity constraints. Recent developments
with adaptive gradient descent algorithms can efficiently solve such problems, and
they are also scalable with data dimensionality. The procedures are illustrated in the
example of canonical correlation analysis, where also higher-order directions can be
directly computed, and the sparsity can be controlled easily. Extensions to other mul-
tivariate methods are possible.
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1 Introduction

Classical methods for multivariate analyses, such as PCA (Principal Com-
ponent Analysis), CCA (Canonical Correlation Analysis), and LDA (Linear
Discriminant Analysis), are based on covariance estimation and aim to find
projection directions in the data according to some criteria. This estimation
procedure is not suitable for high-dimensional data sets, and therefore sparse
methods have been proposed, e.g. by applying elastic net type penalties (Zou
& Hastie, 2005) for the projection directions. Such methods are sensitive to
outlying observations, and therefore methods combining sparsity with robust
estimation have been proposed. In the context of CCA, for example, Wilms
& Croux, 2015 suggest using alternating regressions with sparse and robust
regression estimators. A disadvantage of this approach is that higher-order
directions cannot be derived directly.



2 Methodology

In the example of CCA, we show how the objective can be reformulated as an
optimization problem, directly stating the optimization conditions and offer-
ing a flexible choice of covariance estimator and penalty function. Let xxx and
yyy denote a p- and q-dimensional random variable, respectively, and ΣΣΣxx,ΣΣΣyy
and ΣΣΣxy the corresponding covariance matrices. The first canonical correla-
tion coefficient ρ1 and the first pair of canonical vectors (aaa1,bbb1) are given as a
solution of the optimization problem

max
aaa∈Rp,bbb∈Rq

aaa′ΣΣΣxybbb (1)

under the constraints

aaa′ΣΣΣxxaaa = 1 and bbb′ΣΣΣyybbb = 1. (2)

The k-th canonical correlation coefficient ρk and the respective pair of canoni-
cal vectors (aaak,bbbk) maximize (1) under the condition that they are uncorrelated
with the previous k−1 directions, denoted as the constraints

aaa′ΣΣΣxxaaai = 0 and bbb′ΣΣΣyybbbi = 0, for i = 1, . . . ,k−1. (3)

Penalty terms are added as further constraints for a sparse setting,

Pα1(aaa)≤ c1 and Pα2(bbb)≤ c2 (4)

where c1 and c2 denote positive constants, and the penalty terms (4) are given
as elastic net (Zou & Hastie, 2005) penalties with mixing parameters α1,α2.

The augmented Lagrangian with λλλ denoting the Lagrange multipliers, and
H summarizing the constraints, is then given as

Lρ(aaa,bbb,λλλ) =−|aaa′ΣΣΣxybbb|+λλλ
′ ·H(aaa,bbb)+

ρ

2
∥H(aaa,bbb)∥2

2. (5)

Then, a solution to (1)-(4) can be found by minimizing (5). For the optimiza-
tion algorithm, the method of multipliers (see e.g. Bertsekas, 1982) is com-
bined with an adaptive gradient descent algorithm as described by Reddi et al.,
2018 for an alternating update of (aaa,bbb) and λλλ.

Our approach is not only flexible in the choice of covariance estimator
and penalty type, but we can also directly state the necessary conditions for
higher-order canonical correlations. The robustness of the resulting canonical



correlations can be controlled by an appropriate choice of covariance estima-
tors for ΣΣΣxx,ΣΣΣyy and ΣΣΣxy. The penalty terms (4) induce sparsity in the resulting
canonical directions. Conditions (3) ensure that higher-order directions are
uncorrelated to lower-order canonical vectors. For the higher-order directions,
again, a suitable level of sparsity can be chosen.

In a simulation study, we show the robustness and suitability of our ap-
proach for high-dimensional data in different simulation scenarios. Empirical
applications from tribology underline the usefulness of this approach.

3 Outlook

The methodology can be adapted to other robust multivariate methods such
as LDA or PCA for high-dimensional data. It is sufficient to formulate the
optimization problem and the constraints in a joint Lagrangian problem. The
advantage of using an adaptive gradient descent algorithm is its scalability
to higher dimension, and it also leads to highly precise parameter estimates,
especially for higher-order components.
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