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ABSTRACT: We present an exact solution for the time-varying state distribution in
hidden Markov models (HMMs) with periodic state-switching dynamics. In a case
study using African elephant data, the approach is shown to be superior to commonly
applied alternatives.
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1 Introduction

When inferring latent states and their dynamics from an observed time series,
periodic effects such as diel variation or seasonality are often of primary inter-
est. In applications such as movement ecology or climatology, hidden Markov
models (HMMs) with cyclic components are commonly used to address peri-
odic variation in the latent state process (see, e.g., Nagel et al., 2021). Infer-
ence then often focuses on the periodically varying probabilities of occupying
the different states. These can, in principle, be taken as the empirical distri-
bution of states per time point, as obtained using decoding algorithms such as
Viterbi (see, e.g., Schwarz et al., 2021).

To avoid the noise associated with this approach, especially for shorter
time series, it may however be desirable to instead evaluate the time-varying
state distribution as implied under the fitted model. Here we show how to ex-
ploit the periodic stationarity of corresponding HMMs to arrive at an analytic
solution for the time-varying state distribution. In a case study on elephant
movement, we demonstrate the superiority of our approach over commonly
applied alternatives.



2 Methods

We consider an HMM comprising a state-dependent process {Xt}t=1,...,T (where
Xt can be a vector) and a latent state process {St}t=1,...,T , with St selecting
which of N possible component distributions generates Xt . The state process
{St} is assumed to be an N–state Markov chain, characterised by its initial
state distribution and the time-varying transition probability matrix (t.p.m.)

Γ
(t) = (γ

(t)
i j ), with γ

(t)
i j = Pr(St = j|St−i = i),

t = 1, . . . ,T . We consider a setting with periodically varying state-switching
dynamics, such that
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for all t = 1, . . . ,T , with L denoting the length of a cycle. For hourly data and
N = 2, we could for example model time-of-day variation (L = 24) as
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, for i ̸= j. (2)

The interpretation of such transition probabilities as functions of time can be
tedious, especially when N > 2. Therefore, it has become common practice to
instead consider a simpler summary statistic, namely the (periodically varying)
distribution of the states at time t,

δ
(t) =

(
Pr(St = 1), . . . ,Pr(St = N)

)
,

as a function of time t = 1, . . . ,L. The latter is usually approximated by the
hypothetical stationary distribution ρ(t) of the Markov chain that would result if
the t.p.m. was homogeneous with Γ = Γ

(t), which is the solution to ρ(t) = ρ(t)Γ

subject to ∑
N
i=1 ρ

(t)
i = 1 (Patterson et al., 2009). This approximation of δ

(t)

will in general be biased because it ignores the preceding process dynamics
as implied by Γ

(t−1),Γ(t−2), . . . and instead pretends that the process has been
following the dynamics as implied by a constant Γ

(t) for a considerable time.
However, for periodically inhomogeneous Markov chains as defined in (1),

there is in fact no need for such an approximation. To see this, consider for
fixed t the thinned Markov chain St ,St+L,St+2L, . . ., which is homogeneous
with constant t.p.m.

Γ̃t = Γ
(t+1) · . . . ·Γ(t+L).



Provided that this thinned Markov chain is irreducible, it has a unique station-
ary distribution δ

(t), which is the solution to

δ
(t) = δ

(t)
Γ̃t

(see also Ge et al., 2006 and Kargapolova & Ogorodnikov, 2012). Provided
that the Markov chain starts in its stationary distribution, δ

(t) is the state distri-
bution at time t we are interested in (and otherwise it will be at least approx-
imately correct as the thinned Markov chain will converge to its stationary
distribution).

3 Case study: elephant movement

We consider a complete movement track of an African elephant with hourly
GPS data between October 2008 and June 2009. Based on consecutive lo-
cations, we calculate the Euclidean step lengths as well as the turning angles
and model them in a 3-state HMM with gamma and von Mises distributions,
respectively. To investigate diel variation in the state-switching dynamics we
model the transition probabilities as trigonometric functions of the time of day
(see Equation 2). The fitted model features an “encamped” state with short
step lengths and frequent reversals in direction (state 1), an “exploratory” state
with higher persistence in direction and medium step lengths (state 2), and a
“travelling” state with highly directed and fast movement (state 3).
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Figure 1. Proportion of time spent in each state according to the model-implied peri-
odic stationary distribution, the approximated stationary distribution, and the Viterbi
state decoding.



Based on the fitted HMM, we derive the proportions of time spent in each
state using the model-implied periodic stationary distribution δ

(t), the approx-
imated stationary distribution ρ(t), and the Viterbi-decoded states. The corre-
sponding results are compared in Figure 1. The hypothetical stationary distri-
bution ρ(t) differs greatly from the exact solution δ

(t) and is therefore a poor
approximation in this example. Concerning the proportion of time spent in
each state obtained using the Viterbi algorithm, the results are similar to the
analytically derived periodic stationary distribution δ

(t). The advantage of the
latter, however, is that it is less affected by noise in the data and instead offers
a smooth function of time, even for short time series.

References

GE, HAO, JIANG, DA-QUAN, & QIAN, MIN. 2006. A Simple Discrete Model
of Brownian Motors: Time-periodic Markov Chains. Journal of Statisti-
cal Physics, 123(4), 831–859.

KARGAPOLOVA, N. A., & OGORODNIKOV, V. A. 2012. Inhomogeneous
Markov chains with periodic matrices of transition probabilities and their
application to simulation of meteorological processes. Russian Journal
of Numerical Analysis and Mathematical Modelling, 27(3), 213–228.

NAGEL, REBECCA, MEWS, SINA, ADAM, TIMO, STAINFIELD, CLAIRE,
FOX-CLARKE, CAMERON, TOSCANI, CAMILLE, LANGROCK,
ROLAND, FORCADA, JAUME, & HOFFMAN, JOSEPH I. 2021. Move-
ment patterns and activity levels are shaped by the neonatal environment
in Antarctic fur seal pups. Scientific Reports, 11(1), 14323.

PATTERSON, TOBY A., BASSON, MARINELLE, BRAVINGTON, MARK V.,
& GUNN, JOHN S. 2009. Classifying movement behaviour in relation
to environmental conditions using hidden Markov models. Journal of
Animal Ecology, 78(6), 1113–1123.

SCHWARZ, JONAS F. L., MEWS, SINA, DERANGO, EUGENE J., LAN-
GROCK, ROLAND, PIEDRAHITA, PAOLO, PÁEZ-ROSAS, DIEGO, &
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