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ABSTRACT: In the last two decades, text modeling techniques have been used for var-
ious applications, including the analysis of topics in different text documents, where
the aim is to provide a document representation in terms of topic distribution. This
work aims to show some results on a generalization of the popular latent Dirichlet
allocation model, with a particular focus on the clustering of text documents.
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1 Introduction

Let us consider a collection C of D text documents, commonly referred to as a
“corpus”. The d-th document can be thought of as a sequence (wd,1, . . . ,wd,Nd )

⊺

of Nd words (i.e., wd,n represents the n-th word in the d-th document, d =
1, . . . ,D and n = 1, . . . ,Nd). The set V of the V unique words appearing in the
corpus represents a “vocabulary”.

Topic modeling techniques assume that each word in a document is gen-
erated according to one among T possible topics. As a consequence, the d-th
document can be represented through a vector θθθd = (θd,1, . . . ,θd,T )

⊺, where
θd,t represents the proportion of words in document d generated from topic t.
Clearly, θθθd belongs to the T -part simplex S T = {θθθ : θt > 0,∑T

t=1 θt = 1}. Sim-
ilarly, each topic is represented as a discrete probability distribution φφφt over
the vocabulary V , t = 1, . . . ,T , thus φφφt ∈ SV . The most popular topic model
is the latent Dirichlet allocation (LDA), introduced by Blei et al., 2003, which
supposes both the vectors θθθd and φt following a Dirichlet distribution on S T

and SV , respectively. Thus,

θθθd ∼ Dir(ααα), ααα ∈ RT
+ and φφφt ∼ Dir(βββ), βββ ∈ RV

+.

Despite its popularity, the LDA suffers from the poor parameterization that the
Dirichlet deserves for its covariance matrix. Then, the development of a more
flexible technique seems to be a relevant issue.



2 The flexible LDA

In this section, we introduce a generalization of the LDA, namely the flexible
LDA (FLDA). This model arises by assuming a flexible Dirichlet distribution
(FD, Migliorati et al., 2017) for each θθθd . The FD is a (structured) finite mixture
model with Dirichlet components:

FD(θθθ;ααα,τ,p) =
T

∑
t=1

ptDir(θθθ;ααα+ τ · et),

where p ∈ S T , τ > 0, and et is the null vector with the t-th element equal to 1.
The additional parameters introduced by the mixture structure of the FD allow
for a more flexible modelization of the covariance matrix, thus overcoming
some limitations of the Dirichlet. It is noteworthy to mention that the FD
includes the Dirichlet distribution as a special case if τ = 1 and pt = αt/α+

for t = 1, . . . ,T , hence the FLDA model includes the LDA. The FD possesses
several statistical properties, among which is the conjugacy to the multinomial
scheme. Thus, if θθθd ∼ FD(ααα,τ,p), then θθθd given the corpus (i.e., the observed
data) follows an FD distribution with updated parameters ααα∗,τ∗, and p∗.

To obtain estimates for the FLDA parameters {θθθ1, . . . ,θθθD} and {φφφ1, . . . ,φφφT},
we implement a collapsed Gibbs sampling (CGS), extending the approach pro-
posed by Griffiths & Steyvers, 2004. The main difference with respect to a
standard Gibbs sampling is that full conditionals are computed by marginaliz-
ing some parameters out. The estimates of the dropped parameters are com-
puted by means of the conjugacy properties. To implement a CGS, we intro-
duce a set of latent (i.e., unobservable) random variables Zd,n representing the
topic label of the n-th word in the d-th document, n = 1, . . . ,Nd , d = 1, . . . ,D.

It is possible to show that the full conditionals, namely the probability
that {Zd,n = t} (i.e., the word is assigned to topic t) given all the other topic
assignments z−(d,n), take the following form

p(Zd,n = t|z−(d,n),C ,ααα,τ,p,βββ) ∝

∝

(
αt + c−t,d,·

)(
βvd,n + c−t,·,wd,n

)
(
β++ c−t,·,·

) ·

{
T

∑
h=1

p∗d,h + p∗d,t

(
τt

αt + c−t,d,·

)}
,

t = 1, . . . ,T , where p∗d,t = pt
(αt + τ)[ct,d,·]

(αt)[ct,d,·]
, x[n] = x(x+ 1) · · · · · (x+ n− 1) de-

notes the rising factorial function, and wd,n ∈ V indicates which term of the



vocabulary is associated with the n-th word in document d. Additionally, we
define the quantities ct,d,·, ct,·,w, and ct,d,· as summation over the proper index
of the counts ct,d,v =∑

Nd
n=1 I(zd,n = t, wd,n = v), the latter representing the num-

ber of times that word v is assigned to topic t in document d. Having the full
conditionals, the CGS algorithm can be summarized by the following steps:

1. Initialize the vector z (randomly) and compute the counts c(0)t,d,v;
2. For b = 1, . . . ,B:

• For each word in the corpus:

– sample a new topic z(b)d,n for wd,n from p(z);

– update the counts c(b)t,d,v.

• Use z(b) to compute the estimates θ̂θθ
(b)
d and φ̂φφ

(b)
t .

By having a sample of size B for the topic labels, namely z(b), b = 1, . . . ,B, and
relying on the conjugacy properties, we can estimate θθθd and φφφt as the mean of
an FD and Dirichlet distributions with updated parameters, that is

θ̂θθ
(b)
d =

ααα+ c(b)d + τp∗
d
(b)/p(b)+

α++ τ+Nd
and φ̂φφ

(b)
t =

βββ+ c(b)t

β++ c(b)t,·,·
,

where c(b)d = (c(b)1,d,·, . . . ,c
(b)
T,d,·)

⊺ and c(b)t = (c(b)t,·,1, . . . ,c
(b)
t,·,V )

⊺.

3 Application: The Great Library Heist

During the night, a vandal broke into their professor’s study and tore three
books into single chapters. The single chapters are not labeled, so the profes-
sor is not able to cluster them so to restore the original books. In the following,
we consider the D = 166 chapters as documents forming the corpus. We will
consider T = 3 latent topics, each of them hopefully representing one of the de-
stroyed books. Words in the corpus C compose a vocabulary V of V = 16531
unique terms. We run both the LDA and the FLDA models for B = 5000 it-
erations. Figure 1 displays the topic proportions θθθd for all the documents, by
conditioning on the true topic (i.e., the original book). We can note that both
the LDA and FLDA models represent chapters from “Great Expectations” as
mainly composed of terms arising from topic 1. The FLDA, thanks to the flex-
ible covariance matrix of the FD, improves the LDA performance by providing
more concentrated θθθd’s towards 0 or 1 than the LDA. Similar conclusions hold
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Figure 1. Boxplots of the elements of θθθd estimates by the LDA (upper panels) and the
FLDA (bottom panels) conditioning on the true topic (i.e., the original book).
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Figure 2. Word clouds representing the 20 most probable words for each topic de-
tected by the FLDA.

true for chapters from “20000 Leagues Under the Sea” and “Pride and Preju-
dice”, being characterized by high proportions of words from topics 2 and 3,
respectively. Topics generated by the FLDA are represented by illustrating the
20 most probable words (Figure 2).
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