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ABSTRACT: We show how marginal likelihood thresholding can be applied in the
context of multiple hypothesis testing, proposing a rule to select the tuning parameter
involved. For detecting the positions of nonconsensus amino acids in patients suffer-
ing from two different HIV variants, we use a logistic regression framework and see
that our results are in line with those from standard and advanced procedures control-
ling the false discovery rate, i.e. the proportion of incorrectly rejected null hypotheses.
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1 Setup and Methods

Let Y be a p × 1 random vector with probability mass or density function
f (y;θ) indexed by the parameter θ = (θ1, . . . ,θp)

⊤, which is sparse in the
sense that a small number p∗ ≪ p of its elements are different from zero.
Suppose the full f (y;θ) is difficult to specify or compute, but we can identify
the p conditional univariate marginal distributions of the single Yjs, f j(y|x;θ j)
( j = 1, . . . , p) where x is a k-vector of covariates. Specifically, we assume a
generalized linear model µ j = E(Yj) = g−1(α j + θ jx) with link function g(·)
and dispersion parameter φ > 0.

Given independent observations (Y (i),x(i)) (i = 1, . . . ,n), the composite
marginal likelihood (CML) estimator θ̃ (Varin et al., 2011) maximizes

ℓ(θ;Y (1), . . . ,Y (n)) =
p

∑
j=1

w jℓ j(θ j;Y (1), . . . ,Y (n)), (1)

where ℓ j(θ j;Y (1), . . . ,Y (n)) = ∑
n
i=1 log f j(Y (i)|x(i);θ j) is the jth marginal log-

likelihood and w = (w1, . . . ,wp)
⊤ is the design vector of weights that deter-

mines which margins are included in (1). Finally, we assume that p grows
with the sample size n, but at a slower rate.



1.1 Marginal likelihood thresholding

We review here the method presented in Di Caterina & Ferrari, 2022, for
the current setting. Since the marginal log-likelihoods depend on separate
parameters, we have θ̃ j =

{
θ j : ∑

n
i=1 u j(θ j;Y (i)) = 0

}
( j = 1, . . . , p) where

u j(θ j;y) = ∂ℓ j(θ j;y)/∂θ j denotes the jth marginal score. Sparsity in the fi-
nal estimator θ̂ is induced via the marginal likelihood thresholding (MLT)

θ̂ j =

{
θ̃ j if ŵ j ̸= 0
0 if ŵ j = 0 ( j = 1, . . . , p) ,

where ŵ = (ŵ1, . . . , ŵp)
⊤ is a sparse design vector, selected by minimizing for

some λ> 0 the convex criterion that balances statistical efficiency and sparsity:

d̂λ(w) =
1
2

w⊤Ĉw−w⊤diag(Ĉ)+
λ

n

p

∑
j=1

|w j|
θ̃2

j
, (2)

where Ĉ is the sample covariance matrix of the marginal scores and, if g(·)
takes canonical form, has entries Ĉ jk =∑

n
i=1(Y

(i)
j − µ̃(i)j )(Y (i)

k − µ̃(i)k )(x(i))2/(φ2n)

with µ̃(i)j = g−1(α̂ j + θ̃ jx(i)).

1.2 Selection of the tuning parameter

The tuning parameter λ is crucial in determining the proportion of nonzero
elements in the final MLT estimator θ̂. From the Karush-Kuhn-Tucker (KKT)
first-order conditions for the minimization of (2), we find that θ̂ j is set to zero
if the corresponding rescaled z-statistic is smaller than

√
λ. This condition is

an acceptance region for the null hypothesis θ j = 0 and suggests that λ may be
selected by some form of error control for multiple tests based on the family of
hypotheses Hλ = {H j

0 : θ j = 0 vs H j
a : θ j ̸= 0, j ∈ Âλ}, where Âλ = { j : ŵ j ̸=

0}. Rejecting all the hypotheses in Hλ indicates that the selected parameters
are probably useful and a larger model could be considered by decreasing λ.

By this rationale, using the asymptotic normality of the z-statistic for θ j,
Slutsky’s Theorem and the KKT conditions, if the false discovery rate (FDR)
is set equal to α ∈ (0,1) we obtain the following selection rule for λ:

λ̂ = inf

{
λ :

θ̃2
j

SE2
j
> qα, for all j ∈ Âλ

}
, (3)

where SE j = φ{∑
n
i=1(Y

(i)
j − µ̃ j)x(i)}−1 if g(·) is canonical and qα is the upper

α-quantile of the χ2
1 distribution.



2 Analysis of HIV data

We analyze data from Gilbert, 2005, to investigate differences between two
variants of HIV. The gag p24 amino acid sequence with p = 118 positions
was obtained from n = 146 individuals, half infected with subtype C (group
1, n1 = 73) and half infected with subtype B (group 2, n2 = 73). For each jth
position, the number of subjects with a nonconsesus amino acid was recorded
in groups 1 and 2. Our aim is to detect the differentially polymorphic positions,
where the probability of a nonconsensus amino acid differs in the two groups.

Both Gilbert, 2005, and Chen et al., 2018, §5, assumed the counts per
position were distributed as Bin(τ jg,ng) in the gth group (g = 1,2), com-
puted Fisher’s exact statistics to test the null hypotheses H j

0 : τ j1 = τ j2 for
j = 1, . . . 118, and adjusted for multiple comparison. They discussed that
the Benjamini-Hochberg (BH) method (Benjamini & Hochberg, 1995), which
here finds 12 relevant positions controlling the FDR at level α = 5%, has less
power and possibly yield unreliable results in discrete settings. Because the
first 50 positions have Fisher’s exact test statistics with p-values almost surely
equal to 1, the BH procedure is expected to be extremely conservative here,
meaning to have a FDR much lower than α.

Instead, we model the presence/absence of a nonconsensus amino acid in
subject i on position j as Y (i)

j ∼ Ber(π(i) j) with π(i) j = logit−1(α j + θ jx(i)),
where x(i) is a dummy variable encoding the ith subject’s group (i = 1, . . . ,n).
We can then apply the MLT method to such logistic regression scenario using
p = 118 univariate marginal likelihoods: a nonzero estimate of the logit coef-
ficient θ j will indicate to reject the hypothesis H j

0 : θ j = 0 and so will identify
the jth position as differentially polymorphic.

Since quasi-complete separation occurs when fitting the logistic regression
in some positions, it is convenient to set the marginal θ̃ js equal to the equally
consistent bias-reduced estimates (Firth, 1993). If we choose λ̂ as described
in (3) with α = 5%, we select p̂∗ = 15 nonzero parameters corresponding to
15 differentially polymorphic positions. This is in line with what found by
Gilbert, 2005, via their modified BH procedure. Chen et al., 2018, §5, noticed
that the classical BH method applied after excluding the first 50 positions also
leads to the same conclusion. In terms of positions selected by MLT, Table 1
shows that 13 out of 15 were identified also by at least another multiple testing
procedure conducted on this data set in Gilbert, 2005, and Chen et al., 2018,
§5, controlling the FDR at level α = 5%. Note that, when the complete data
are analyzed, neither of the FDR-controlling procedures considered selects any



Table 1. Number of positions selected via MLT classified by alternative FDR-
controlling method. A tick indicates the corresponding method also selects those posi-
tions at level α = 5%. The ∗ marks methods run after excluding the first 50 positions.

# Selected Modified adaptive adaptive
positions BH BH∗ BH BH∗ BH-Heyse∗

by MLT (Gilbert, 2005) (Chen et al., 2018)
7 ✓ ✓ ✓ ✓
3 ✓
1 ✓ ✓ ✓
1 ✓ ✓
1 ✓
2

Tot: 15

of the first 50 positions. It would then appear sensible that results did not
change once those were discarded. Yet this sort of robustness holds only for
the modified BH procedure and our proposal.
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