
A THREE-WAY “INDIRECT” REDUNDANCY ANALYSIS
Laura Marcis 1, Maria Chiara Pagliarella1 and Renato Salvatore 1

1 Department of Economics and Law, University of Cassino and Southern
Lazio, (e-mail: laura.marcis@unicas.it, mc.pagliarella@unicas.it,
rsalvatore@unicas.it)

ABSTRACT: This work introduces a composite Three-Way application of the High
Order Singular Value Decomposition. Two of the three component data matrices are
processed by a standard Redundancy Analysis. The remaining “external” data matrix
is related to the others in a heterogeneous system of relations, that can be well suited
to tensor analysis. The external data are set to be linked with the first matrix, while
with the second matrix the relations are explained only through multivariate linear
regression. An application introduces the method, based on the official data from the
Italian Equitable and Sustainable Well-being indicators.
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1 Introduction and background

Tensor decomposition (Kolda & Bader, 2009) has the main objective of re-
ducing complex information detected by higher dimensional arrays of data.
From a pure statistical perspective, there are two important exploitations of
the tensor analysis: the Candecomp/Parafac decomposition and the Tucker de-
composition. They play the role of the extension to tensor objects of the prin-
cipal component analysis (PCa), recognized as an explorative way to approach
multidimensional information (Kroonenberg, 2008). In the literature, the most
popular tensor decompositions are “Canonical Decomposition” and the “High
Order SVD” (HOSVD, De Lathauwer et al., 2000). The HOSVD decomposes
an N-mode tensor, as a multidimensional array, in a core reduced-order tensor,
multiplied by component matrices alongside each of the N modes. Three-way
PCa was the first extension of the PCa to a three-way data set, giving the first
useful employment of tensor analysis to explorative statistical analysis. In
standard PCa, the components that come from the SVD that summarize indi-
viduals are uniquely related to the components that summarize variables. In a
three-way PCa the components that summarize entities in each of the modes
are related with the remaining two. Redundancy Analysis (RDA, Legendre



and Legendre, 2012) was originally introduced in order to capture the effect
onto a reduced space ŶX = XB̂ of the linear dependence by a set of criterion
variables Y from a set of predictors X, where B̂ is the matrix of the ordinary
least squares multivariate regression estimates. RDA provides a constrained
analysis of the whole linear relations between the two sets of variables, and
an unconstrained analysis given by the set of multivariate regression residuals.
It can be considered as an extension of multivariate regression because mod-
els the effects of the explanatory variables on a response matrix. Partial RDA
(pRDA) explores the effects of the predictors in X on the Y variables, given
the covariates of some additional exploratory variables in a matrix Z. It is a
standard RDA performed taking into account the X variables as predictors on
Y− ŶZ , with the “effect” by Z removed. Nevertheless, the relations between
the variables Y and Z may be quite several. While remaining the same the role
of the predictors X on Y, a third set of variables Z may be related and depend
on Y, by an existing but not well defined dependence. Thus, applying multi-
variate regression may result hardly appropriate. Variables in Z in some cases
can not be modeled on Y as predictors in a multivariate regression, while X
predict Y and, indirectly through Y, the variables in Z. Residuals Y− ŶX may
take in account the role of X in the “indirect” explanation of Z. This is some-
what different from pRDA, because Y is not regressed on Z, as the external set
of covariates from which we remove the effect on Y, and also Z is not related
with Y through linear regression. Given a 3rd-order tensor X ∈ RI×J×K , the
Tucker decomposition through the HOSVD decomposes the tensor X into a
core tensor G and factor matrices along each mode, as follows:

X ≈ G×1A×2 B×3 C

with the correspondent elementwise expression xi jk=∑
R
r=1 ∑

S
s=1 ∑

T
t=1 grstairb jsckt ,

with i= 1, ..., I, j = 1, ...,J,k = 1, ...,K. The factor matrices are columnwise or-
thonormal, A= [a1, ...,aR], B= [b1, ...,bS],C= [c1, ...,cT ], with r = 1, ...,R,s=
1, ...,S, t = 1, ...,T . The matricized forms, one per mode, of the 3-way tensor
X are:

X(1) ≈ A(C⊙B)′ = AG(1)(C⊗B)′,
X(2) ≈ B(C⊙A)′ = BG(2)(C⊗A)′,

X(3) ≈ C(B⊙A)′ = CG(3)(B⊗A)′,

with the symbols ⊙ and ⊗ that are the Khatri-Rao and Kronecker products,
respectively. If rR(X ) is the rank of the tensor X alongside one of the modes,



Table 1. Description of the variables used for the application

Variables Description

S8 Age-standardised mortality rate for dementia and nervous
system diseases

IF3 People having completed tertiary education (30-34 years old)
L12 Share of employed persons who feel satisfied with their work
REL4 Social participation
POL5 Trust in other institutions like the police and the fire brigade
SIC1 Homicide rate
BS3 Positive judgement for future perspectives
PATR9 Presence of Historic Parks/Gardens and other Urban Parks

recognised of significant public interest
AMB9 Satisfaction for the environment - air, water, noise
INN1 Percentage of R&D expenditure on GDP
Q2 Children who benefited of early childhood services
BE1 Per capita adjusted disposable income
LBE1 Logarithm of Per capita adjusted disposable income

the HOSVD may uses Alternating Least Squares, in order to find:

min
G ,A,B,C

∥∥X −G×1A×2 B×3 C
∥∥ .

Making the substitutions A = Y, B = Y− ŶX , C = Z, with I = J = K = n, R =
S = r(Y) = r(Y− ŶX), and T = r(Z), we achieve the desired result, by finding
a Three-Way version of the ”indirect” RDA, with the proper data matrices.
Like in the standard RDA, the data in Y, X, and Z have to be preprocessed by
centering and standardazing their column vectors. This is requested before the
application of the RDA of Y on X.

2 Application study

The Equitable and Sustainable Well-being indicators (BES) are designed to
define the economic policies which largely act on some fundamental aspects
of the quality of life. Table 2 reports the description of these indicators. We
use the latter as the predictor variable in the RDA that gives the constrained
analysis in the subspace of ŶX . Table 2 reports the correlation matrix between
the column vectors of Y, Y∗, and Z. Correlations in bold are significant. It
is interesting to remark that in some cases the variables in Z are correlated
with the columns of Y, while they are generally poorly related with the RDA
residuals vectors (given by the unconstrained RDA). In particular, the evidence
is that even if Z may be regressed on Y, for some variables the regression on
X results inappropriate. One of the important cases is shown by the variable
AMB9. This variable (Satisfaction for the environment - air, water, noise) is
permanently correlated with the variable BS3 (Positive judgement for future



Table 2. Correlations - Matrices Y, Y⋆, and Z
Variable Y1BS3 Y2INN1 Y3IF3 Y4Q2 Y5L12 Y6S8
Z1AMB9 0,4029 −0,0239 0,4570 0,6852 0,8090 0,6926
Z2POL5 0,1906 0,3629 0,2594 0,6395 0,6330 0,5973
Z3PAT R9 0,1800 0,3759 0,0426 0,0353 0,0146 0,2420
Z4REL4 0,5133 0,2601 0,4413 0,7026 0,8380 0,6507
Z5SIC1 −0,2215 −0,1150 −0,4665 −0,5397 −0,5925 −0,6343
Variable Y1⋆BS3 Y2⋆INN1 Y3⋆IF3 Y4⋆Q2 Y5⋆L12 Y6⋆S8
Z1AMB9 0,4605 −0,1075 0,2848 0,1294 0,0423 −0,0119
Z2POL5 0,0042 −0,1972 −0,0523 0,0662 −0,0624 −0,0755
Z3PAT R9 −0,1311 0,2081 −0,2749 0,2794 0,0053 0,1774
Z4REL4 0,3595 −0,0025 −0,0056 0,0993 −0,1227 −0,1229
Z5SIC1 −0,2029 −0,0184 −0,3021 −0,1787 −0,0291 −0,0234

perspectives), whatever is y or y∗ = y−ŷX (with corr(y,y∗) = 0.7293). We
have a moderate correlation between the variable BS3 and the correspondent
RDA residuals, and a moderate explanation of this variable is given by the BE1
(Per capita adjusted disposable income). Then, a tentative conclusion is that
the “Satisfaction for the environment” (a Z variable) does not depend on the
“Disposable income” (the RDA predictor X). An opposite case occurs when
we try to assess the same AMB9 variable, versus L12 (Share of employed
persons who feel satisfied with their work). Even we have that corr(y,y∗) =
−0.2395, AMB9 has the greatest correlation with the observed L12 (y), which
reduces to be not significant in terms of L12 RDA residuals (y∗). Thus, even
the ”Share of employed persons who feel satisfied with their work” depends
on the ”Disposable income”, and the “Satisfaction for the environment” can
be explained by the relation with “People that feel satisfied with their work”,
the “Satisfaction for the environment” depends on the “Disposable income”
through its relation with the “People that feel satisfied with their work”.
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