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ABSTRACT: In this work, we compare five different methods proposed in forensic
statistics to cope with the rare type match problem. This problem arises when the DNA
profile of a suspect coincides with the profile from a crime sample, but it is not present
in the available database collected from the population of reference. We compare
the methods designed to evaluate the likelihood ratio in this framework by using a
set of supervised cases and by considering each method as a classifier that provides
the posterior probabilities of two alternative hypotheses, those of the prosecution and
the defense, starting from a grid of prior probabilities. We compare them using the
value of the posterior cross entropy and decompose it into two terms quantifying their
calibration and refinement loss.
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1 Introduction

The rare type match problem is the challenging situation faced by a forensic
statistician who has to provide the value of a match between the characteristic
() of a crime stain and that of a suspect when J is not in a database of refer-
ence of size n. The information provided by evidence, y, is evaluated through a
likelihood ratio that can lead to the posterior odds of the hypotheses formulated
by the prosecution and the defense, H € {h,,h,}, for a grid of prior probabil-
ities. Several methods have been designed in the literature to cope with this
problem when evidence consists of Y-STR profiles. We aim to compare these
methods according to Bayesian decision theory, evaluating the expected cost
of decisions expressed as posterior probabilities for the two hypotheses. Using
strictly proper scoring rules as cost functions, the expected cost can be de-
composed into two components corresponding to calibration and refinement,
features of a classifier useful to guide the choice among alternative methods.
Y-STR are polymorphic loci on the Y-chromosome containing a repeated
sequence of nucleotides. Individuals differ by the number of times the se-



quence appears at each locus. A Y-STR profile is a list of the numbers of
repetitions at a finite number (typically 7 to 23) of loci. The Y-chromosome
is only contributed by the father so that there is no recombination; the loci are
dependent and cannot be modeled separately. For this reason, a profile must
be considered as a whole, and, in case of a rare type match, no frequencies are
available from the database to estimate the rarity of the y profile.

2 Proposals for the LR evaluation in case of a rare type match

We want to compare methods that address the rare type match problem differ-
ently. We restrict ourselves to five methods assuming that the observed profiles
are an i.i.d. sample and not assuming any genetic model; other possibilities ex-
ist, e.g. (Andersen et al., 2013), but are not directly comparable.

A first group of methods copes with the rare type match problem by in-
cluding the suspect profile in the reference data base:

* Augmented Count (AC), is a frequentist method for which:
LRyc = (n+1)/(ny+1) =n+1,

with ny equal to the frequency of ¥ in the database.

* The Bayesian AC, B-AC, (Cereda, 2017a) assumes that the frequency
of ¥ in the database is distributed according to a Bin(n, ¢;), with ¢y, the
unknown probability of § in the population, distributed according to a
Beta(1, 1) distribution. These assumptions yield to:

LRg-ac = (n+3)/(ny+2)=(n+3)/2.

A second group looks at the list of profiles in the data, including the suspect
profile, as partitioned into subsets containing the same Y-STR profile. Building
upon different assumptions, the methods evaluate the LR by summarizing the
data through 7, |, the vector containing the cardinality of the subsets.
* The two-parameter Poisson Dirichlet method (2PD) (Cereda et al., 2023)
assumes an infinite number of Y-STR profiles in the population and that

the vector of their ordered relative frequencies follows a 2PD distribution
with parameters o € (0,1) and 6 > —o.. Thus, the LR becomes:

ntite’
¢ The Generalized Good (GG) method (Cereda, 2017b) evaluates the LR:

LRGG = nn1/2n2,

l—a -1
LRypp = [/ (a,0 | Tyt 1 )dodO| .

with n; and n; the number of singletons and doublets in the database.



* The Brenner’s kappa method (Bk) (Brenner, 2010) evaluates the LR as:

LR = (n+1)*/(n—m).

3 The posterior cross entropy and its decomposition

We use tools developed by Bayesian decision and information theory to eval-
uate the five reviewed proposals. Starting from an LR provided by a method
m € {AC, B-AC, 2PD, GG, Bk}, LR,,, the evaluation concerns the distribution

. LR,O(H hp) - -
pm(H | y) with p,,(hp, | y) = HTW(O(I){)v where O(H) = Zéh;; is the prior odds.

We consider the log cost function, acting when H is known:

_ [ —logy(pm(hly)) ifH=h
Clpm(hly)] —{ _logi(l_pm(hw)) ifH#h.

Since H is usually unknown, we must consider the expected cost correspond-
ing to Shannon’s Entropy of H|y.

In comparing methods, the mixing distribution of the costs, p(:|h), can be
thought of as how Nature expresses the uncertainty on Y| and, consequently,
via Bayes’ theorem, on H|y. Moreover, we are interested in an average over
all the possible evidence y which could arise from the population. This leads
to the posterior cross entropy:

CEpp,H|Y)== Y p(h) Y p(y|h)1og(pm(hly)) = Dpp,(H|Y)+Ep(H|Y).
he{hy,ha} ey

As aresult, CE, , (H |Y) is the primary criterion of evaluation. The two
other criteria are a) D), , (h|Y), the Kullback-Leibler divergence that quan-
tifies the calibration loss, i.e., how the method puts forward posteriors on H
in agree with Nature; b) £,(H | Y), the posterior entropy that quantifies the
refinement loss, i.e., the degree of sharpness provided in discriminating hy-
potheses. We denote the evidence generically by y, but different methods pro-
vide probability distributions based on different statistics. Unfortunately, we
cannot directly compute the two terms in the decomposition since we have
no access to p(y|H), so we provide empirical estimates that require a strategy
for building a database of supervised cases starting from a large sample from
the population. The proposed solution is based on a Monte Carlo approach
and relies on a Pool-Adjacent-Violators (PAV) algorithm that provides an ap-
proximate solution. Our results can be presented as the so-called ECE-plot,
showing each method’s empirical posterior cross-entropy evaluated for differ-
ent prior probabilities p(h). An example is in Fig 3, where we can compare the
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Figure 1. ECE before (LHS) and after (RHS) the application the PAV algorithm.

ECE of the five methods before and after applying the PAV algorithm. Fig 3
(left) shows that 2PD-B, exploiting 7,1, achieves the smallest £C‘E; while,
the worst method is AC-B which uses only the size of the data and makes
the lazy assumption of a flat prior distribution on the probability of the “rare”
characteristic. Fig 3 (right) shows that, once recalibrated, all the methods have
almost the same refinement so that the main differences attain calibration.
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