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ABSTRACT: Existing methods can perform likelihood-based clustering on a multi-
variate data matrix of ordinal responses, using finite mixtures to cluster the rows and
columns of the matrix. Those models can incorporate the main effects of individual
rows and columns and the cluster effects to model the matrix of responses. However,
many real-world applications also include available covariates. In this study, we have
extended mixture-based models to include covariates and test what effect this has on
the resulting clustering structures. We focus on clustering the rows of the data matrix,
using the proportional odds cumulative logit model for ordinal data. We fit the models
using the Expectation-Maximization (EM) algorithm and assess their performance.
Finally, we also illustrate an application of the models to the well-known arthritis
clinical trial data set.
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1 Introduction

A well-known definition of an ordinal variable says it is one characterized by
a categorical data scale, which describes an order showing differing degrees of
dissimilarity (Agresti, 2010). Thus, although ordinal variables are affected by
the distances among their ordinal categories, those distances are not known. In
this work our approach to mixture-based clustering involves constructing an
additive linear model of parameters, connected to the response data via a link
function. Additional terms such as covariates may easily be added to the linear



predictor. To the best of our knowledge, (Fernández et al., 2019) introduced
this formulation of model-based clustering for ordinal data with covariates, but
the performance of these covariate methods and, more importantly, their influ-
ence on the resulting clustering structures, have not been documented so far.
The main purpose of this article is to extend such models to include covariates
and allow them to affect the detection of cluster structures. Moreover, we are
also interested in comparing how the resulting clustering structures compare
to those obtained without covariates, and how these changes may affect the
interpretation of the results. We will focus on extending the one-dimensional
clustering approach proposed in (Matechou et al., 2016). This approach mod-
els ordinal response data using the proportional odds assumption of the cumu-
lative logit model (from now on ”proportional odds model”). We will include
covariates directly in the linear predictor.

2 Model formulation

When the data are in matrix form, clustering of rows is called row cluster-
ing. We present the row clustering formulation for finite mixtures based on
the proportional odds model. This closely follows the model formulations in
(Matechou et al., 2016 , Fernández et al., 2019). We decided to focus on row
clustering because it is more common to have covariates linked to observations
(rows) than to variables (columns). We consider a set of n subjects and m ordi-
nal response variables, each with q possible ordinal response categories. Thus,
data can be represented by an n×m matrix Y with ordinal entries yi j. The row
cluster index r (r = 1, . . . ,R) represents the number of the row cluster and the
symbol i ∈ r indicates that row i is allocated to row cluster r. We shall assume
that all rows belonging to the same row cluster r have ordinal responses driven
by the same row cluster effect, i.e. that there are no individual row effects. In
a simpler model with clustering of rows, the rows (observations/subjects) will
tend to be clustered if they have similar patterns of responses, without taking
into account the information present in the covariates.

Having in mind that R and C are the numbers of row clusters and column
clusters, respectively, we will deal with the possible values of C = m (when
column effects are different and therefore they are included within the model,
without clustering). C = 1 when the column effect is the same and it is not
included into the model.

Considering the simplest row clustering model, without column effects,



the proportional odds model without covariates can be expressed as

logit

(
k

∑
h=1

θi jrh

)
= ηi jrk = µk −αr, (1)

where the parameters µk are the cutpoints and αr indicates the effects of row
cluster r. Adding p covariates into Model 1, we obtain

logit

(
k

∑
h=1

θi jrh

)
= ηi jrk = µk − (αr + xT

i δr), (2)

where δr represent the effects of the covariates Models 1 and 2 will be used in
the simulation and application section to compare the clustering structure.

3 Application

We applied the models proposed in this article to the arthritis clinical trial
data set (Lipsitz et al., 1996), which compares the drug auranofin and placebo
therapy for the treatment of rheumatoid arthritis. The data set is obtained from
the R package multgee (Touloumis, 2015). In this application, the covariate-
dependent clustering could help to identify subsets of patients with similar
covariate information patterns. This insight would be important because it
would provide a flexible approach for identifying potential heterogeneous gen-
der, age, and auranofin treatment effects on the arthritis scores. After fitting
the models without covariates Eq.(1) and with covariates Eq.(2), with differ-
ent number of row clusters, we compared them using the information criteria
AIC and BIC (see results in Table 1). AIC indicates that the best model is
the version of the row clustering model including age and treatment covariates
(µk − (αr + xi1δ1r + xi2δ2r)) with R = 4 row clusters (AIC = 2136.78), which
is better than its counterpart in the model without covariates (AIC=2154.40).
However, BIC shows that the model without covariates (µk −αr) and R = 4 is
the best model (BIC=2202.05). A possible reason is that BIC penalizes higher
numbers of parameters more strongly than AIC does, leading to a preference
for more parsimonious models.
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Table 1. Results of row clustering models fitted to the arthritis data set. The best
model in each group of models (no covariates, one, two, or three covariates), based
on AIC, is shown in bold.

Model R number of Log-like AIC BIC
parameter

µk −αr 2 6 -1096.99 2205.99 2234.58
3 8 -1077.73 2171.46 2209.59
4 10 -1067.20 2154.40 2202.05
5 12 -1067.20 2158.40 2215.58

µk − (αr + xiδr) x= age 2 8 -1138.18 2292.37 2330.49
3 11 -1071.88 2165.75 2218.17
4 14 -1065.18 2158.37 2225.08
5 17 -1060.84 2155.68 2236.68

x=treatment 2 8 -1082.28 2180.57 2218.69
3 11 -1067.93 2157.87 2210.28
4 14 -1057.70 2143.40 2210.11
5 17 -1056.23 2146.46 2227.46

x= gender 2 8 -1096.89 2209.77 2247.89
3 11 -1079.51 2181.02 2233.44
4 14 -1066.92 2161.84 2228.55
5 17 -1066.37 2166.74 2247.74

µk − (αr + xi1δ1r + xi2δ2r) x1 = age, 2 10 -1072.54 2165.07 2212.72
x2= treatment 3 14 -1059.23 2146.46 2213.17

4 18 -1050.39 2136.78 2222.55
5 22 -1048.53 2141.05 2245.88

x1 = age, 2 10 -1085.83 2191.67 2239.32
x2= gender 3 14 -1068.97 2165.95 2232.66

4 18 -1061.29 2158.58 2244.35
5 22 -1059.26 2162.52 2267.35

x1 = treatment, 2 10 -1081.82 2183.64 2231.29
x2= gender 3 14 -1065.99 2159.99 2226.71

4 18 -1056.73 2149.45 2235.22
5 22 -1055.06 2154.13 2258.96

µk − (αr + xi1δ1r + xi2δ2r + xi3δ3r) x1 = age, 2 12 -1071.60 2167.21 2224.39
x2= treatment, 3 17 -1060.50 2155.00 2236.01

x3= gender 4 22 -1050.35 2144.71 2249.54
5 27 -1052.14 2158.35 2287.00

FERNÁNDEZ, DANIEL, ARNOLD, RICHARD, PLEDGER, SHIRLEY, LIU,
IVY, & COSTILLA, ROY. 2019. Finite mixture biclustering of discrete
type multivariate data. Advances in Data Analysis and Classification, 13,
117–143.

LIPSITZ, STUART R., FITZMAURICE, GARRETT M., & MOLENBERGHS,
GEERT. 1996. Goodness-of-Fit Tests for Ordinal Response Regression
Models. Journal of the Royal Statistical Society. Series C (Applied Statis-
tics), 45(2), 175–190.

MATECHOU, ELENI, LIU, IVY, FERNÁNDEZ, DANIEL, FARIAS, MIGUEL,
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