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ABSTRACT: In many real-life situations it may happen to consider a regression model
with compositional explanatory variables. Compositional data describe parts of some
whole, having the feature to sum to a fixed value, so they are commonly presented as
vectors of proportions, percentages, or frequencies. In the compositional framework,
the presence of structural zeros in the regressors is problematic, since a composition
is not allowed to have a part equal to zero. In the recent years, a few techniques have
been introduced in the literature to adress this issue. In this paper a description and a
comparison of the most interesting proposals are provided.
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1 The compositional data framework

During the last decades Compositional Data (CoDa) have gained more atten-
tion in the literature. The relevant information in compositional data is in the
ratios between the parts and not in their absolute values or in their sum. Differ-
ent examples of compositional data can be easily found in every field: physics,
chemistry, finance, social sciences, and economics, just to mention some of
them (cf. Pawlowsky-Glahn et al. , 2015). The CoDa methodology has been
developed to deal with the compositions.

Definition 1 Let D∈N. Consider the real-valued vectors RD, with all (strictly)
positive components. Two of such vectors x=(x1,x2, . . . ,xD) and y=(y1,y2, . . . ,yD)
are compositionally equivalent whether there exists a positive constant c ∈ R
such that x = c · y. A D-part composition is then a class of equivalence con-
taining all the compositionally equivalent vectors in RD.

Since a D-part composition is an equivalence class, a representative one has to
be selected: it is usually the vector of proportions that sum to 1. The sample



space for the D-part compositions is the simplex SD, defined by:

SD = {(x1,x2, . . . ,xD) ∈ RD : xi > 0 ∀i;
D

∑
i=1

xi = c}, (1)

where the arbitrary constant c is usually set to 1. For further details, see
Pawlowsky-Glahn et al. , 2015, Filzmoser et al. , 2018, and references therein.
Starting from the definition of composition, the so-called Aitchison geom-
etry on the simplex can be defined: it is the suited framework to analyze
compositional data, and it can be equipped with a coherent distance, norm,
and inner product. In CoDa analysis, a dataset X is a sample of n observa-
tions, each one being a D-part composition X = (x1,x2, . . . ,xn)

′, with xi =
(xi1,xi2, . . . ,xiD), i = 1,2, . . . ,n. The standard statistical descriptive measures,
based on the real Euclidean structure, should be used with attention in such a
dataset, since they can lead to erroneous conclusions (see Pawlowsky-Glahn
et al. , 2015). To overcome this issue, the compositional approach proposes
alternative statistical tools and methods, based on the Aitchison geometry.

A usual practice in handling compositions is the application of transfor-
mations, mapping them into real vectors (belonging to suitable spaces) for ex-
ploiting the usual Euclidean structure. Several transformations based on logra-
tios have been proposed: the additive (alr), the centered (clr) and the isometric
(ilr) logratio transformations. Their features can be found in Pawlowsky-Glahn
et al. , 2015 and Filzmoser et al. , 2018. The definition of ilr-transformation is
the following one.

Definition 2 For a D-part composition x = (x1,x2, . . . ,xD), the isometric lo-
gratio (ilr) transformation associated to an Aitchison-orthonormal basis in SD,
{ei}, (i = 1,2, ...,D−1), is the mapping from SD to RD−1 given by:

ilr(x) = [⟨x,e1⟩a,⟨x,e2⟩a, ...,⟨x,eD−1⟩a],

where ⟨·, ·⟩a denotes the Aitchison inner product in SD, defined by:

⟨x,y⟩a =
1

2D

D

∑
i=1

D

∑
j=1

(
ln

xi

x j
ln

yi

y j

)
.

For the remainder of this paper, it is worth just mentioning that the ilr-
transformation is characterized by two important features: (i) it reduces the
number of parts, since a D-part composition is mapped into a vector in RD−1;
(ii) it preserves both the distances and the angles: in the simplex the Aitchison
distance of two compositions is equal to the distance of the corresponding ilr-
transformed vectors in RD−1 (see Pawlowsky-Glahn et al. , 2015 for details).



2 Regression models with compositional regressors

Many examples of regression models with (at least some) compositional ex-
planatory variables can be easily found. In such a case, the regressors can not
be directly used since compositional data are by definition singular: the con-
straint about their sum provides the linear dependency of the regressors and a
singular covariance matrix.

The standard approach is to apply the ilr-transformation to the original
explanatory variables and to consider the corresponding ilr-transformed vari-
ables as new regressors (Hron et al. , 2012). In this way, the linear dependence
of the compositional regressors can be discarded: the new obtained model can
be easily handled, and then parameter estimation can be done as in usual linear
regression. This approach cannot be applied whether there are zeros, since in
this case, no logratio transformation can be carried out. It follows that in case
of structural zeros in the regressors, a different procedure has to be undertaken.
It is worth recalling that a structural zero is a value that is certain to be zero,
and it is not due to imprecise or insufficient measurements.

3 Three approaches dealing with structural zeros

For facing the issue of structural zeros in regression models with compositional
regressors a few approaches have been proposed, quite recently. In the follow-
ing, three of them are briefly presented: the first one is due to Aitchison, 1986,
while the other two are described in Verbelen et al. , 2018. In the presentation
more details will be provided to characterize and compare the three methods.

3.1 A naive approach: the replacement

The replacement strategy is the first method proposed in the literature, and it
is the most intuitive one. The idea is to take all those values giving problems
(since, for example, they are zeros) and replace them with a nonproblematic
value (for example, a value very close to zero). This approach can be very
easily implemented, and it can also be used to remove missing values. The
most relevant drawbacks are the arbitrary nature of the replaced values, and
the inconsistency in case of structural zeros, as they are true zeros.



3.2 The conditioning approach

The conditioning approach consists in treating the observations with different
structural 0 patterns as different subgroups within the data, so that the regres-
sion coefficients are modeled conditionally on the 0 patterns. This method
requires to compute for each compositional observation with at least one 0
part, the ilr-transformation of the corresponding subcomposition with non-
zero parts (obtained by removing the zero parts) and to model the compo-
sitional predictor effect separately by 0 pattern. The regression coefficients
obtained by this method are different for each structural 0 pattern and hence
only estimated by using observations with that particular 0 pattern.

3.3 The projection approach

The projection approach is more parsimonious than the conditional one, since
the regression parameters are shared across the different 0 patterns. In this
method, a generalized isometric logratio transformation from the simplex SD

to RD−1 is proposed as an extension of the usual one. This new transformation
can be applied also to a compositions with one or more zero parts, since the
logratios are calculated using the projections onto the orthogonal complement
of the structural 0 parts.
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