
MODEL-BASED CLUSTERING FOR TORUS DATA

Luca Greco 1, Antonio Lucadamo 2 and Claudio Agostinelli 3,

1 University G. Fortunato, Benevento, Italy, (e-mail:
l.greco@unifortunato.eu)
2 Department DEMM, University of Sannio, Italy (e-mail:
antonio.lucadamo@unisannio.it)
3 Department of Mathematics, University of Trento, Italy, (e-mail:
claudio.agostinelli@unitn.it)

ABSTRACT: Torus data are multivariate circular observations that arise as measurements
on a periodic scale and are often recorded as angles. In this paper, we focus on
parsimonious model based clustering for torus data by building on the mclustmethodology.
Therefore, covariance constraints are imposed on the completely general heterogeneous
clustering model allowing a flexible and general framework to clustering torus data.

KEYWORDS: torus data, model-based clustering, wrapped distribution

1 Introduction

Torus data are multivariate circular observations. Many applications involve
torus data in several fields: protein bioinformatics, wind directions, animal
movements, people orientation, human motor resonance, robotics, astronomy,
meteorology, geology, medicine, oceanography. Actually, multivariate circular
data can be thought of as points on a p-torus Tp, p > 1, whose surface is
obtained by revolving the unit circle in a p-dimensional manifold. The multivariate
wrapped normal (WN) distribution is a very attractive model for torus data
(Mardia & Jupp, 2000). In Greco et al., 2022, the WN distribution has been
proved to be very useful in modeling mixtures of torus data and providing
an effective tool for model based clustering and classification, but only under a
completely general heterogeneous clustering model. In this paper, by paralleling
a widely used methodology for linear data on Rp, we focus on parsimonious
model based clustering for torus data by building on the mclustmethodology
(Scrucca et al., 2016).



2 Parsimonious model based clustering

Let us consider a sample of size n of torus data y = (y1,y2, . . . ,yn), from the
finite mixture model with density function

f ◦(y;τ) =
G

∑
g=1

δgm◦(y;θg), (1)

where we set τ = (δ1, . . . ,δG,θ1, . . . ,θG), G denotes the number of groups, δg
are membership probabilities, δg > 0, ∑

G
g=1 δg = 1, θg =(µg,Σg) are component

specific location and scatter and m◦(y;θg)=∑ j∈Zp m(y+2π j;θ) is the wrapped
density function, where j is the vector of wrapping coefficients and m(·) the
corresponding unwrapped density. Let m◦(y;θg) be the density of a WN distribution
(being m(·) the normal density). Building on mclust, we enforce constraints
on the scatter matrices Σg using the parsimonious models of Celeux & Govaert,
1995 that can be obtained by means of the eigenvalue decomposition of the
covariance matrices of the form Σg = λgDgAgD⊤

g , where λg = [det(Σg)]
1/d ,d =

1,2, . . . , p, is a measure of the volume of the gth cluster, Ag is a diagonal matrix
with the eigenvalues of Σg, with det(Ag) = 1, specifying the shape and Dg is an
orthogonal matrix whose columns are given by the eigenvectors of Σg which
determines the orientation.

In order to make estimation of wrapped models feasible, the infinite sum
over Zp is replaced by a sum over the Cartesian product CJ = ⊗J p, J =
(−J.,−J +1, . . . ,0, . . . ,J −1,J), for some J providing a good approximation.
Then, maximum likelihood estimation of the model in (1) follows from the
maximization of the mixture log-likelihood function.

ℓ(τ) =
n

∑
i=1

log f ◦(yi;τ) =
n

∑
i=1

log

[
G

∑
g=1

δg ∑
j∈CJ

m(y+2π j;θg)

]
. (2)

The operations of mixing and wrapping commute, and (2) can be rewritten as

ℓ(τ) =
n

∑
i=1

log

[
∑
j∈CJ

G

∑
g=1

δgm(y+2π j;θg)

]
=

n

∑
i=1

log f (yi +2π j;τ)

where f (y+2π j;τ) is a mixture density for linear data.
Observe that the wrapping coefficients j are unknown. Then, they can be

considered as latent variables and the observed torus data y as being incomplete.
In the following, maximum likelihood estimation relies on a data augmentation



approach and is performed according to a suitable Classification Expectation
Maximization algorithm. The point is that there are two sources of incompleteness
in (2): one given by the wrapping coefficient vectors, the other from group
memberships. The proposed algorithm iterates between an outer Classification
Expectation (CE) step, in which the circular data are unwrapped to fitted linear
data x̂ = y+2π ĵ (see Nodehi et al., 2021), and an inner run of a classical EM
algorithm for (linear) finite mixtures using the fitted linear data. Actually, the
algorithm maximizes the (approximated) classification log-likelihood function
based on the complete torus data (y, j):

ℓc(τ) =
n

∑
i=1

∑
j∈CJ

vi j log

[
G

∑
g=1

δgm(yi +2π j;θg)

]
, (3)

where vi j = 1 or vi j = 0 according to wheter yi has j ∈CJ as wrapping coefficients
vector.

Formal approaches to infer the number of clusters and select the best model
among the available parsimonious alternatives can be based on the value of the
penalized complete log-likelihood function (3) at convergence or, alternatively,
of the incomplete data log-likelihood function (2). Classical model selection
criteria are given by the Bayesian Information Criterion (BIC) or the integrated
complete-data likelihood criterion (ICL).

3 A numerical example

Let us consider a synthetic data example to illustrate the proposed methodology.
The sample size is n = 500. Data have been generated according to a bivariate
WN mixture model with two components and unbalanced memberships probabilities,
imposing an EII covariance structure. Starting values are driven from cluster-
wise constrained maximum likelihood estimation under the assumed model
from an initial partition obtained using the angular separation distance and the
Ward agglomerative method. The BIC selects the right model, in this example.
Cluster assignments are plotted in Figure 1. Tolerance ellipses are also given,
based on the normal model. Note that the data have been represented on a flat
torus, that is the same data structure repeats itself on the Euclidean space to
account for the wraparound nature of the data. i.e. data are represented for
different js. The procedure has been repeated 500 times. The model EII has
been correctly selected in 95.6% of the simulations. The average Adjusted
Rand Index (ARI) between the inferred partitions and the true component
memberships is 0.963.
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Figure 1. Cluster assignments and tolerance ellipses under the EII model.

References

CELEUX, G., & GOVAERT, G. 1995. Gaussian parsimonious clustering
models. Pattern recognition, 28(5), 781–793.

GRECO, L., NOVI INVERARDI, P., & AGOSTINELLI, C. 2022. Finite
mixtures of multivariate Wrapped Normal distributions for model based
clustering of p-torus data. Journal of Computational and Graphical
Statistics.

MARDIA, K. V., & JUPP, P. E. 2000. Directional statistics. Wiley Online
Library.

NODEHI, A., GOLALIZADEH, M., MAADOOLIAT, M., & AGOSTINELLI, C.
2021. Estimation of parameters in multivariate wrapped models for data
on ap-torus. Computational Statistics, 36, 193–215.

SCRUCCA, L., FOP, M., MURPHY, T. B., & RAFTERY, A. E. 2016. mclust
5: clustering, classification and density estimation using Gaussian finite
mixture models. The R journal, 8(1), 289.


