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ABSTRACT: Least squares regression is highly unreliable when a strong collinearity
structure is present among the predictors. Among several proposals introduced in the
literature, principal component regression is a straightforward method to overcome
the problem, even if it introduces a slight bias in the parameter estimation. This paper
presents a simulation study to evaluate the use of principal component regression in
the context of quantile regression and, focusing on the variability of the estimates and
the model’s prediction ability.
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1 Introduction

In classical multiple linear regression applications, multicollinearity occurs
very often, i.e. whenever two or more predictors are strongly correlated with
each other. Such an issue can affect least-squares (LS) regression coefficients,
their standard deviation, and consequently the associated t-tests, fitted values,
and predictions.
Although multicollinearity has been extensively covered in the linear regres-
sion literature (Weisberg, 2005, Martens & Næs, 1992), little attention has
been devoted to its effects in the context of quantile regression (QR) (Koenker
& Hallock, 2001, Davino et al., 2013, Furno & Vistocco, 2018). Possible so-
lutions to the problem have been proposed from the ridge regression viewpoint
(Bager, 2018), or focusing on variable selection techniques (Zaikarina et al.,
2016), for instance. However, an alternative approach addresses the problem
of multicollinearity from a different perspective: the entire set of variables is
preserved but replaced by some synthetic variables defined as principal com-
ponents. This alternative approach is known as regression on latent variables



(James et al., 2013), the variants of which differ in how these latent variables
are obtained. Among these, the best-known method is the principal compo-
nent regression (PCR)(Massy, 1965), from which the technique of quantile on
principal component regression (QPCR) (Davino et al., (2022)) originated.

The contribution of this article is to investigate the multicollinearity is-
sue in the QR by evaluating its effects and deepening the study of the QPCR
method.

2 Methods

In formal notation, the multiple linear regression model can be expressed as:

y = Xβββ+ e, (1)

where y is the (n×1) vector of the dependent variable, X is a (n×K) fixed ma-
trix representing the independent variables, βββ is a (K×1) vector of unknown
regression coefficients, and e is a (n× 1) vector of errors assumed to be nor-
mally distributed, with E(e) = 0, and E(ee′) = σ2In. In the following, without
loss of generality, we assume that X and y are centered columnwise. The LS
estimator is

β̂ββ = (X′X)−1X′y. (2)

The covariance matrix of β̂ββ is equal to

cov(β̂ββ) = σ
2(X′X)−1, (3)

and can be also formulated in terms of the singular value decomposition of the
X′X matrix as

cov(β̂ββ) = σ
2

K

∑
k=1

pk(1/λk)p′k, (4)

where p and λ are the eigenvectors and the eigenvalues of X′X, respectively
(Næs & Mevik, 2001). Equation (4) highlights how, in presence of collinearity
among the predictors, i.e. when some eigenvalues are very small, the variance
of the regression coefficients increases.

The LS predictor ŷ is unbiased, and the related Mean Squared Error (MSE),
written using the eigenvector and eigenvalue decomposition of X′X, is

MSE(ŷ) = σ
2/N +σ

2
K

∑
k=1

t2
k /λk +σ

2, (5)



where tk = xxx′pk is the score of xxx along eigenvector k. Equation (5) shows
that the MSE depends not only on the magnitude of the eigenvalue but also
on the t-score, i.e., on how much the new observations fall within the range of
variability of the observed data along the different axes.

PCR finds some linear combinations of the original variables and use them
as regressors to predict y. Specifically, principal components analysis is ap-
plied to the matrix of predictors X to extract the A most dominating principal
components. The PCR model structure is given by the following two equations

X = TP′+E, (6)
y = Tq+ f,

where T is called scores matrix and collects the A dimensions responsible for
the systematic variation in X, P and q are called loadings and describe how
the variables in T are related to the original variables in X and y, respectively.
The PCR estimator is no longer unbiased since only the main dimensions are
retained, while the less relevant ones are discarded. The MSE of the predictor
ŷPCR is

MSE(ŷ) = σ
2/N +σ

2
A

∑
k=1

t2
k /λk +

(
−

K

∑
k=A+1

(tk/
√

λk)αk

)2

+σ
2. (7)

It has been empirically demonstrated (Næs & Mevik, 2001) that in situations of
collinearity among the predictors, the PCR predictor performs better than the
LS predictor in terms of MSE. Equation (7) suggests that a more considerable
contribution of the variance along the eigenvectors with small eigenvalues (a=
A+1, . . . ,K) for the LS predictor is replaced in the case of the PCR predictor
by a more negligible bias contribution.

The extension of the PCR to the context of the QR is straightforward, as
shown in Davino et al., (2022). The model structure for the so-called QPCR is
given by the following two equations:

X = TP′+E (8)
Qθ (ŷ|T) = Tβ̂(θ)

where Qθ(.|.) is the conditional quantile function for the θ–th conditional
quantile with 0 < θ < 1. It is worth noting that QPCR can produce the same
numerical and graphical outputs as PCR, for each selected θ.



3 Simulation study

The simulation study aims to investigate the QPCR properties assessing:

• the variability of the regression coefficients in terms of MSE, given that
the PCR estimator is biased;

• the prediction ability of the model both in the case of new cases within
the range of the sampled data (i.e. to interpolate) and in the case of new
data outside such a range (i.e. to extrapolate).
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