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ABSTRACT: A method for handling the unique correlation structure that can occur in
longitudinal data is introduced for hidden Markov models. This approach uses a fam-
ily of independent mixture models that apply a variety of constraints to the covariance
matrix, which is then used in hidden Markov models, i.e, dependent mixture models.
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1 Introduction

Longitudinal data is information that is collected on several subjects across
several points in time. Longitudinal studies are often used in clinical or so-
ciological research, but difficulties may arise as the correlation that can occur
between subjects must be accounted for. For certain longitudinal studies, it
would be useful not only to cluster the subjects but to model the transitions
between states. The change in state can be modeled by hidden Markov mod-
els (HMMs). Efforts have been made in regression models, specifically AR
and MA models (Hasan & Sneddon, 2009; Sutradhar, 2003), and in indepen-
dent mixture models (McNicholas & Murphy, 2010) to account for the unique
longitudinal correlation structure. This research modifies the EM algorithm
for HMMs by using the covariance structures from the Cholesky-decomposed
Gaussian mixture model (CDGMM) family (McNicholas & Murphy, 2010).

2 Background

A hidden Markov model comprises of two processes, an unobserved parame-
ter process and an observed state-dependent process. The simplest HMM for
longitudinal data can be defined as

P(Cit |C(it−1)) = P(Cit |Cit−1), for i = 1, ...,n, t = 2,3, ...,T

P(Xit |X(it−1),C(t)) = P(Xit |Cit), for i = 1, ...,n, t = 1, ...,T



where C(it) represents the history of the unobserved parameter process {Cit :
i = 1, ...,n, t = 1,2, ...,T} with state space C = 1, ...,m, and X(it) represents the
history of the state-dependent process {Xit : i = 1, ...,n, t = 1,2, ...,T}. The
parameter process Cit satisfies the Markov property and is then used in the
distribution of the state-dependent process Xit .

A common method for maximum likelihood estimation of an HMM is the
expectation-maximization (EM) algorithm (Dempster et al., 1977). An EM for
HMMs is called the Baum-Welch algorithm (Baum et al., 1970, 1972; Welch,
2003). Specifically, it is an EM for a hidden Markov model whose Markov
chain is homogeneous. By assuming a homogeneous HMM, the parameter
estimates have closed form solutions. The parameters are derived from the
complete-data log-likelihood given by
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where ϑϑϑ denotes the vector containing the model parameters, δi is the station-
ary distribution, γgk are the transition probabilities, the unknown labels uitg = 1
if the observation i is in state g at time t and uitg = 0 otherwise, and the other
unknown labels vitgk = 1 if the observation i is in state g at time t − 1 and in
state k at time t, and vitgk = 0 otherwise.

For longitudinal data, McNicholas & Murphy (2010) use a Gaussian (in-
dependent) mixture model with a modified Cholesky decomposed covariance
structure (Pourahmadi, 1999, 2000) such that the precision matrix ΣΣΣ can be de-
composed into ΣΣΣ

−1 = T′D−1T, where T is a unique unit lower triangular ma-
trix and D is a unique diagonal matrix with strictly positive diagonal entries.
For a p-dimensional random variable X, the multivariate Gaussian mixture
model with the modified-Cholesky decomposition, the gth component density
is given by
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A family of eight Gaussian mixture models are constructed by constraining Tg and/or
Dg with the option to impose the isotropic constraint Dg = δgIg. This family is called
the Cholesky-decomposed Gaussian mixture model (CDGMM) family. The nomen-
clature, covariance structure, and number of free covariance parameters for all models
are displayed in Table 1.



Table 1. CDGMM Family

Model Tg Dg Dg Free Cov. Parameters
EEA Equal Equal Anisotropic p(p−1)/2+ p
VVA Variable Variable Anisotropic m[p(p−1)/2]+mp
VEA Variable Equal Anisotropic m[p(p−1)/2]+ p
EVA Equal Variable Anisotropic p(p−1)/2+mp
VVI Variable Variable Isotropic m[p(p−1)/2]+m
VEI Variable Equal Isotropic m[p(p−1)/2]+1
EVI Equal Variable Isotropic p(p−1)/2+m
EEI Equal Equal Isotropic p(p−1)/2+1

Constraining Tg such that Tg =T suggests that all states have the same correlation
structure. Constraining Dg such that Dg = D suggests that all states have the same
variability at each time point and the isotropic constraint Dg = δgIp suggests that the
variability at each time point is the same. All models would be fitted using an EM
algorithm and then based on a model selection criterion, one would be selected.

3 Methodology

We propose modifying the M-step in the EM algorithm for a Gaussian HMM by sub-
stituting the ‘traditional’ covariance update, i.e.,

ΣΣΣg =
1
ng

n

∑
i=1

T

∑
t=1
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t=2 ûitg, with a member of the CDGMM family. This modified

algorithm is outlined in Algorithm 1.



Algorithm 1 EM Algorithm for Gaussian HMM
1: initialize δδδ and ΓΓΓ

2: initialize uitg and vitgk
3: while convergence criterion is not met do
4: update ûitg, v̂itgk
5: update γgk, δg
6: update µ̂µµg

7: update T̂g, D̂g

8: update Σ̂ΣΣ
−1
g = T̂′

gD̂−1
g T̂g

9: check convergence criterion
10: end while
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