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ABSTRACT: Automatic selection of the parameter in the spectral clustering algorithm
through the mixture model approach has been considered. Specifically, a maximum
likelihood approach using the Gaussian mixture model to select the proximity param-
eter in the self-tuning kernel function has been introduced.
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1 Introduction
Spectral clustering methods are based on graph theory, where data are repre-
sented by the vertices of an undirected graph and the edges are weighted by the
similarities between pairs of units, see von Luxburg, 2007, Shi & Malik, 2000,
Ng et al. , 2001. Specifically, the spectral approach is based on the properties
of the pairwise similarity matrix coming from a suitable kernel function. Then
the clustering problem is reformulated as a graph partition problem.

Let X = {x1,x2, . . . ,xn} ⊆ Rp be a set of units. In order to cluster X in K
clusters, the first step of the spectral clustering algorithm concerns the defini-
tion of a symmetric and continuous function κ : X×X → [0,∞) called kernel
function. Afterwards, a similarity matrix W = (wi j) can be assigned by setting
wi j = κ(xi,x j)≥ 0, for xi,x j ∈ X. Specifically, here, we consider the following
self-tuning kernel function (see Zelnik-Manor & Perona, 2004)

κ(xi,x j) = exp

(
−
∥∥xi −x j

∥∥2

εiε j

)
, i, j = 1, . . . ,n, (1)

with εi = ∥xi −xh∥, where xh is the h-th neighbour of point xi (similarly for ε j).
Afterward, the normalized graph Laplacian is introduced as the n× n matrix
Lsym = I−D−1/2WD−1/2, where D = diag(d1,d2, . . . ,dn) is the degree matrix;
di is the degree of the vertex xi defined by di = ∑

n
j=1 wi j and I denotes the

n×n identity matrix. The spectral clustering algorithm works on the embedded
space. Given K, let {γγγ1, . . . ,γγγK} be the eigenvectors corresponding to the K



smallest eigenvalues of Lsym. Then the normalized Laplacian embedding is
defined as the map ΦΓΓΓ : {x1, . . . ,xn} → RK given by ΦΓΓΓ(xi) = (γ1i, . . . ,γKi),
for i = 1, . . . ,n. Let Y = (y′1, . . . ,y′n) be the n×K matrix of the embedded
data, where yi = ΦΓΓΓ(xi) for i = 1, . . . ,n. Finally, the embedded data Y are
clustered according to some clustering procedure. Usually, this latter step is
performed using the k-means algorithm, here, mixture models have been taken
into account, since they are more robust approaches with respect to the choice
of parameter of the spectral clustering algorithm, see Di Nuzzo & Ingrassia,
2022b for details.

As a matter of fact, in the spectral clustering algorithm, there are two free
parameters to be tuned: the local scale parameter h in the kernel function (1)
and the number of clusters K. Specifically, the kernel function plays an impor-
tant role in the spectral clustering context because it affects the entire structure
of the data. For this reason, the goal of many authors has been to find an au-
tomatic or heuristic way to select the kernel function with the corresponding
scale parameter.

In this framework, given the number of clusters K, a proposal of an auto-
matic method for parameter selection in the kernel function (1) via the Gaus-
sian mixture model according to the maximum likelihood approach is intro-
duced.

The rest is organized as follows: in Section 2 a maximum likelihood ap-
proach to select the parameter h in (1) is introduced; in order to confirm the
validity of methodology, in Section 3 some numerical examples are shown.
2 Maximum likelihood approach to parameter selection
In this section, an automatic criterion to select the parameter h in the self-
tuning kernel function (1) is introduced. Note that for the sake of simplicity,
we introduce this approach by using the self-tuning kernel function (1), but it
can be extended to other kernel functions proposed in the spectral clustering
context, see e.g Zhang & Yu, 2011, John C.R., 2020, Park S., 2021.

The parameter h in (1) has a key role in pre-processing data because it
affects the geometrical structure of the graph in terms of weight associated
with any pairs of vertices in the graph. Specifically, in Di Nuzzo & Ingrassia,
2022a a graphical approach to select the parameters of the spectral clustering
algorithm has been considered. The results in Di Nuzzo & Ingrassia, 2022a
show that by analysing the graphic features of the embedded space and the
number of the diagonal blocks of the similarity matrix W, an optimal number
of groups K can be easily selected. However, the choice of the parameter h isn’t
always easy to select. Therefore, without a criterion to address this problem,



different values of h can be considered optimal choices.
More precisely, as h varies, we have different configurations of the data in

the embedded space, so we select h such that the embedded data are fitted by
a Gaussian mixture model as much as possible. Therefore, we don’t apply the
Gaussian mixture model for fitting a given data set, but we look for the param-
eter h such that the corresponding data set is fitted by the Gaussian mixture
model as much as possible.

For this purpose, we analyse the maximum log-likelihood parameter esti-
mates deriving from the Gaussian mixture model using the EM algorithm and
set h according to the maximum log-likelihood. In other words, we fit a Gaus-
sian mixture model (with a fixed number K of components), according to the
maximum likelihood approach, to different data sets corresponding to differ-
ent h ∈ H , where H ⊆ {1, . . . ,n−1} is the collection of possible parameters h
considered in the numerical experiments. Then we get a set of maximum like-
lihood values l1, . . . , l|H | for each data set, and select h∗ leading to the overall
maximum likelihood value, i.e. h∗ = argmaxhlh. Our proposal is summarized
in Algorithm 1.

Algorithm 1 Parameter selection h in (1)
1. ∀h ∈ H , compute the spectral clustering algorithm where the last step is

executed with Gaussian mixture model.
2. ∀h ∈ H , compute the log-likelihood value using EM algorithm obtaining

the log-likelihood set L =
{

l1, . . . , l|H |

}
.

3. Select h according to the maximum log-likelihood value, i.e. h∗ corre-
sponds to l∗ = maxL .

3 Numerical examples
Numerical examples according to the proposed approach (Algorithm 1) are
here presented.

Table 1. Toy data.

h Acc ARI Lik
1 1 1 3961.853
2 1 1 2658.617
10 1 1 2463.996
20 0.9866 0.9444 2424.739

Table 2. Flame data.

h Acc ARI Lik
2 0.9875 0.9501 344.7159
5 0.9125 0.6789 238.3863

10 0.9042 0.6517 307.1519
48 0.8583 0.5116 244.413

Toy. Toy data (http://cs.joensuu.fi/sipu/datasets/) consists
of n = 373 units, p = 2 variables and K = 2 clusters. In Table 1 we list, for



some parameters, the accuracy, ARI, and the log-likelihood values, the optimal
choice according to Algorithm 1 corresponds to h = 1.
Flame. The Flame data (http://cs.joensuu.fi/sipu/datasets/)
consists of n = 240 units, p = 2 variables and K = 3 clusters. In Table 2 we
list ARI and log-likelihood values for some h parameters. Also in this case,
the maximum log-likelihood corresponds to the maximum value for accuracy
and this confirms our proposal.
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