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ABSTRACT: A robust procedure based on impartial trimming is discussed, aimed to
protect nonparametric clustering stemming from kernel mean shift from the deleteri-
ous effect of outliers.
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1 Introduction

The problem of data contamination, where unexpected points that do not share
the pattern of the majority of the data are observed, is known to possibly hin-
der the validity of inferential procedures. The issue is even more critical in
clustering, where the lack of a reference ground-truth to aim at makes even the
simplest problem an ill-posed one. Genuine observations forming small clus-
ters can be mistaken with outliers (swamping); on the other side, outlying data
lying close to each other just by chance can form spurious clusters (masking).
Moreover, in this setting it is quite difficult to state a working notion of outliers,
and robustness is not only data dependent, but rather cluster dependent (Hen-
nig, 2008), which is itself often arbitrary. It then looks clear how contaminated
data can compromise or even invalidate unsupervised techniques.

A large amount of work has been done to define robust clustering strate-
gies in the mainstream approaches within the distance- and the model-based
approach (see Farcomeni & Greco, 2016, for a review). Conversely, the issue
has been largely neglected in the nonparametric framework, where clusters are
identified as the domains of attractions of the modes of the underlying den-
sity (Stuetzle, 2003). The correspondence between groups and modal regions
entails some reasons of attractiveness: clusters are not constrained to predeter-
mined shapes, and resorting to nonparametric methods keeps this flexibility;
additionally, the number of clusters is inherent of the data density, hence deter-
mined as part of the estimation procedure (see, Menardi, 2016, for a review).
However, these very same properties turn out to be pitfalls of nonparametric



methods in the presence of outliers. Actually, outliers can produce spurious
modes. In the presence of spurious modes, outliers self-validate themselves,
as they can not be declared unlikely with respect to the cluster they have given
birth to. Finally: how can one say what is unlikely, with respect to a cluster
which can take any shape? In the following, a robust-to-outliers counterpart of
the Kernel Mean Shift (KMS, Fukunaga & Hostetler, 1975) for modal detec-
tion is discussed, based on an outlyingness criterion specifically designed for
the considered framework.

2 Methodology

Let X = (x1,X2,...,%,) be a sample of size n, with x; € R¢, d > 1. A kernel
density estimator is given by f(x) = 1y Ky(x—x;) where Ky(x) is a d-
variate kernel function scaled by a symmetric positive definite d x d bandwidth
matrix H. KMS is an iterative algorithm to identify modal clusters from a
kernel density estimate of a set of data. The algorithm recursively shifts each
data point to a local weighted mean mg g,
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until convergence. The weights are normalized gradient vectors of the kernel
function. Hence, the mean shift is a gradient ascent algorithm based on a
normalised kernel estimator of the gradient.

We propose a robust counterpart of KMS based on impartial trimming
(Cuesta-Albertos et al., 1997). The methodology, summarised in Algorithm
1, climbs iteratively via KMS the modes of a trimmed kernel density estimate,
obtained by discarding at each iteration a fixed proportion o of data with the
lowest densities with respect to the pertaining cluster. Then, the identified clus-
ters allow to update the outlyingness score of each observation and run KMS
on a renewed active set. Iterations stop as the trimmed set is not updated.
The procedure is impartial since the detection of the trimmed points is a result
of the procedure jointly with cluster assignments and it recasts to a trimmed
KMS (tKMS). The initial active subset [ () can be obtained as follows: (a)
consider an over-smoothed fitted density; (b) select a proportion of points with
the largest fitted densities.




Algorithm 1 Iteration » of tKMS
Optimization Step
Evaluate the kernel density estimate over the active set 1) of size n — |not)
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Run KMS to identify the modes of f) (x), and get a partition of X in clusters
{Cn([)} , each with cardinality nf,f)
m

Letm=m; if x; € C,E[)

Trimming Step

Compute g,@ = gAf,Z) (xi),i=1,2,...,n with
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Update 11 by ruling out from X the |nou] points with the lowest of ¢

3 Examples

We illustrate the effectiveness of the proposed methodology, as well as the
drawbacks of classical KMS in the presence of contamination, through some
synthetic examples. Figure 1 gives the results from running both KMS and
tKMS on a pair of bivariate data structured in three clusters in the presence
of background noise. While essentially identifying the true clusters, in both
examples KMS also detects spurious modes, wheres tKMS recovers the under-
lying clustering structure and trimmed points are not assigned to any cluster.
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Figure 1. Classification from KMS (left) and tKMS (right) for two synthetic data ex-
hibiting three variously shaped clusters (one for each row). The identified clusters are
denoted by different colors, while the estimated modes are denoted by X. Trimmed
points are identified in black.
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