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ABSTRACT: Shapley values are a practical tool from Explainable AI used to interpret
model outcomes on the observation level. Their usefulness has also been demonstrated
in the context of multivariate outlier detection, where the contributions of single vari-
ables to the overall outlyingness are evaluated. This allows for an alternative view
to cellwise outlyingness, where the interest is in identifying deviating cells of a data
matrix. The concept of outlier explanation based on Shapley values can be extended
to outlyingness for matrix-valued observations, which is an interesting new topic in
robustness by itself.
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1 Shapley Values for Vector-valued Observations

Shapley values have been introduced in cooperative game theory, where they
evaluate the collective payoff of a coalition of players (Shapley, 1953). In
the context of multivariate data, each observation is analyzed separately. A
player would be an individual variable, and one can be interested in a subset of
variables’ effect on an outcome. For example, for a black-box method in clas-
sification, we might want to know why an observation has been assigned to a
particular class. Shapley values allow evaluating how the variables contributed
to the classifier’s decision (Lundberg & Lee, 2017).

Also, in the context of multivariate outlier detection, it is of interest why
an observation has been declared outlying. A traditional tool for multivariate
outlier detection is the Mahalanobis distance (Mahalanobis, 1936). To reli-
ably identify outliers, it is essential to robustly estimate mean and covariance
(Rousseeuw & Zomeren, 1990), and one option is to use the Minimum Covari-
ance Determinant (MCD) estimator (Rousseeuw & Driessen, 1999). Shapley
values can be adapted to the setting of squared Mahalanobis distances: One can
obtain a decomposition of this distance measure into an outlyingness score for
each variable, which can be interpreted as the average marginal contribution



to the outlyingness of an observation (Mayrhofer & Filzmoser, 2023). The
sum of all these contributions is identical to the squared Mahalanobis distance
of the observation. Another interesting feature is that the computational com-
plexity of determining the Shapley values reduces to a very simple problem
in the context of Mahalanobis distances, and thus the computations are very
time-efficient, also in higher dimensions.

While the Shapley values inform about the contribution of the variables
to the outlyingness of an observation, they do not inform about the values
these cells would have if the observation would not be contaminated. This,
however, is the goal of cellwise outlyingness methods (Rousseeuw & Bossche,
2018). A modification in the calculations of Shapley values also allows getting
this information by which amount a cell needs to be modified to make the
observation non-outlying (Mayrhofer & Filzmoser, 2023). As an outcome,
one can obtain diagnostics regarding cellwise outlyingness.

2 Shapley Values for Matrix-valued Observations

Another important class of data structures are matrix-valued observations. Thus,
the information is represented in the rows and columns of a matrix, and a
prominent example are image data. Often, matrix-valued observations are vec-
torized; for example, the pixel information of an image can be arranged in a
long vector, which then forms one row of a “traditional” data matrix. This
leads to very high-dimensional data in which the neighborhood relationship of
the pixels is lost.

The concept of matrix-valued data is not new at all, and a prominent distri-
bution in this context is the matrix normal distribution (Dawid, 1981). There
are different proposals in the literature on how to estimate the parameters of
this distribution (Dutilleul, 1999). It is also possible to define a Mahalanobis
distance, and the concept of the MCD estimator can be modified to obtain ro-
bust estimators. Finally, Shapley values can be used, and their contributions
again sum up to an observation’s squared Mahalanobis distance. In the con-
text of image data, for example, one can identify outlying images and explain
which pixels contribute to this outlyingness. A more detailed background, as
well as illustrative examples, will be provided in the presentation.
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