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ABSTRACT: It is known that outliers can be problematic when statistical techniques
are applied. This is also the case in Cluster Analysis and, with this in mind, the
TCLUST method was introduced as a robust clustering alternative. Given a fixed trim-
ming level α, TCLUST attempts to detect the fraction α of observations that should
best be discarded after assuming k normally distributed components. However, the
main problem is how to determine reasonable values for k and α for a given data set.
An approach was introduced to choose k and α through visual inspection of “classi-
fication trimmed likelihood” curves. Theoretical background will be provided for a
better understanding of that approach, along with a parametric bootstrap method to
reduce subjectivity and produce a small list of sensible robust clustering partitions.
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1 Robust clustering and TCLUST

It is well known that outliers can be problematic when applying statistical
methods for data analysis, and this also happens in the case of Cluster Anal-
ysis. Outliers can affect clustering methods in such a way that main clusters
can be joined artificially or clusters formed of few outlying observations are
detected (see, e.g., Garcı́a-Escudero & Gordaliza, 1999). Moreover, it is in-
teresting to apply clustering techniques to deal with outliers since clustered
sets of outliers are known to be particularly harmful for many (even robust)
statistical procedures. Consequently, different robust clustering methods have
been introduced that can be used successfully to jointly deal with clusters and
outliers (Ritter, 2014, Garcı́a-Escudero et al., 2016).



One such approach to robust clustering is based on applying impartial trim-
ming. Given a fixed trimming level α, the term “impartial” means that is the
data set itself that indicates what fraction α of observations should be trimmed.
The TCLUST method introduced in Garcı́a-Escudero et al., 2008 is a robust
clustering procedure based on that impartial trimming principle and where el-
liptically contoured clusters are allowed.

Given a sample X = {x1, ...,xp} in Rp, the TCLUST method is defined by
maximizing

k

∑
j=1

∑
i∈R j

log(π jφ(xi;µ j,Σ j)), (1)

where φ(·;µ,Σ) is the density function of the p-variate normal distribution,
{R0,R1, ...,Rk} is a partition of the indexes {1,2, ...,n} such that #R0 = [nα].
Also, in that maximization, we enforce

Mn/mn ≤ c

for Mn = max j=1,...,k maxl=1,...,p λl(Σ j) and mn = min j=1,...,k minl=1,...,p λl(Σ j)
being, respectively, the largest and the smallest of the eigenvalues of the Σ j
scatter matrices. The constant c ≥ 1 plays an important role by avoiding un-
interesting “spurious clusters” and providing well-defined mathematical prob-
lems. The π j ≥ 0 weights also satisfy ∑

k
j=1 π j = 1.

The TCLUST procedure can be implemented using the tclust package
in R (Fritz et al., 2012) and the FSDA Matlab toolbox (Riani et al., 2012).
However, TCLUST requires the simultaneous specification of the number of
clusters k and the trimming fraction α. Choosing correctly those two parame-
ters for a given data set is not always an easy task because, for instance, a set of
close outliers could be considered as “noise” to be trimmed (requiring a higher
α) or, alternatively, as an additional cluster (requiring a higher k). Therefore,
the determination of k and α is a clearly interrelated problem that requires an
unified treatment. Even choosing the number of groups k in Cluster Analysis,
without trimming, is already well known to be a very complex problem.

2 Classification trimmed likelihood curves

A graphical procedure for selecting sensible values for k and α for TCLUST
(when c is fixed) was introduced in Garcı́a-Escudero et al., 2011. The proce-
dure was based on the visual inspection of the so-called “classification trimmed
likelihood” curves. These curves are defined through

(k,α) 7→ LΠ(α,k;X ), (2)



where LΠ(α,k;X ) denotes the maximum value reached in the constrained
maximization of (1). Garcı́a-Escudero et al., 2011 explained that

tn
k,α = LΠ(α,k+1;X )−LΠ(α,k;X )

should not be too small when there is a clear benefit in increasing k to k+ 1
for a trimming level α. This heuristic led to a graphical exploratory tool for
choosing reasonable values for k and α.

Given a probability measure P, we can define a population version of the
TCLUST problem (Garcı́a-Escudero et al., 2008). We can also define popula-
tion versions of the classification trimmed likelihoods appearing in (2), which
are denoted as LΠ

α,k(P). We have that LΠ
α,k(Pn) = LΠ(α,k;X ), where Pn de-

notes the empirical measure corresponding to X (X seem as the realization of
an i.i.d. sample from P). Given the consistency

LΠ
α,k(Pn)→ LΠ

α,k(P),

and the fact that tn
k,α = LΠ

α,k+1(Pn)−LΠ
α,k(Pn), it makes sense to analyse the

behaviour of LΠ
α,k(P) to see under what circumstances tn

k,α should be small.
Theoretical have been obtained on the expected changes in LΠ

α,k(P), when in-
creasing k to k+1, depending on the underlying distribution P. These results
provide some theoretical background to better understand the key ingredients
involved in the classification trimmed likelihood curve and how these curves
should be interpreted.

3 Parametric bootstrap automated procedure

In practical applications, it is not always easy to determine sensible values for
k and α just from that visual inspection of the classification trimmed likelihood
curves. The user must make rather subjective decisions about whether or not
tn
k,α can be considered small due to sample variability. A parametric bootstrap

procedure will be presented trying to overcome that trouble.
By applying TCLUST to compute tn

k,α, we also obtain parameter estimates
for the k fitted normal components. These parameters are used to draw B para-
metric bootstrap samples {X ∗b}B

b=1, but also trying to emulate the mechanism
generating the fraction α of contaminating observations in X . If k and α are
reasonable parameters, then {L(α,k+1;X ∗b)−L(α,k;X ∗b)}B

b=1 would allow
us to “mimic” the sampling distribution of tn

k,α and compute bootstrap p-values
as

pk,α =
#{b : L(α,k+1;X ∗b)−L(α,k;X ∗b)> tn

k,α}
B

.



We can use these bootstrap p-values to finally get a reduced list of reason-
able k and α values for applying TCLUST in an fully automated way. Users
can use this reduced list to choose the robust cluster partition that best meets
their ultimate cluster and outlier detection goals, by applying standard cluster
validation/visualization tools.

Illustrative and real data examples, together with a simulation study, also
seem to justify the interest of the automated selection proposal. Therefore, we
consider that the proposal is clearly valuable since it can certainly help the user
in the detection of anomalies.
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