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ABSTRACT: The sparse and smooth functional clustering (SaS-Funclust) method is
presented for sparse clustering of functional data, i.e., to split a sample of curves
into homogeneous groups while jointly detecting the most informative portions of the
domain. SaS-Funclust relies on a functional adaptive pairwise fusion penalty and a
roughness penalty. The former allows identifying the noninformative portion of the
domain, whereas the latter improves the interpretability by imposing some degree of
smoothing to the cluster means. The practical advantages of the SaS-Funclust method
are illustrated through a real-data example in the analysis of the Berkeley growth study
dataset. The SaS-Funclust method is implemented in the R package sasfunclust,
available on CRAN.
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1 Introduction

In the last years, due to recent developments in technology and computational
power, the majority of the data gathered by practitioners and scientists in many
fields contain information about curves or surfaces that are apt to be modelled
as functional data, i.e., continuous random functions defined on a compact do-
main (Ramsay & Silverman, 2005). Cluster analysis is a key tool in functional
data analysis, just as it is in the multivariate (non-functional) statistical litera-
ture, with applications in several fields. Functional clustering main goal is to
classify a sample of functional data into homogenous groups of curves with
no explicit information on the actual underlying clustering structure (Capezza
et al., 2021). However, as stated in many multivariate data applications, some
characteristics could be entirely unhelpful in revealing the desired clustering
structure. In this setting, to achieve more accurate group identification, it is
important to determine the features in which respect true clusters differ the
most, or equivalently noninformative features that may conceal the true clus-
tering structure. More in general, the methods capable of selecting informative



features and eliminating noninformative ones are referred to as sparse (Witten
& Tibshirani, 2010; Pan & Shen, 2007; Guo et al., 2010). Recently, the notion
of sparseness has been translated into a functional data clustering framework.
Sparse functional clustering methods have appeared in literature with the aim
of clustering functional data while jointly detecting the most informative por-
tion of the domain and improving both the accuracy and the interpretability
of the analysis (Floriello & Vitelli, 2017; Vitelli, 2023). In this article, we
present the model-based procedure for the sparse clustering of functional data,
which has been recently proposed by Centofanti et al., 2023, and referred to
as sparse and smooth functional clustering (SaS-Funclust). The SaS-Funclust
procedure is implemented in the R package sasfunclust and is openly avail-
able on CRAN.

2 The SaS-Funclust method

Suppose that N vectors YYY i = (yi1, . . . ,yini)
T , of size ni, i = 1, . . . ,N, of ob-

served values of a function fi over the time points ti1, . . . , tini are spread among
g = 1, . . . ,G unknown clusters and the probability of each observation to be-
long to the gth cluster is πg. The function fi is assumed a Gaussian random
process with mean µg, covariance ωg, and values in L2 (T ), which denotes the
separable Hilbert space of square-integrable functions defined on the compact
domain T . We assume that, conditionally on the cluster membership, YYY i is
modelled as

YYY i = fff i + εεεi, i = 1, . . . ,N,

where fff i = ( fi (ti1) , . . . , fi (tini))
T contains the values of the function fi at ti1,

. . . , tini and εεεi is a vector of random errors zero mean and constant variance σ2
e .

In this setting, the SaS-Funclust solution (Centofanti et al., 2023) is obtained
by maximizing the following penalized log-likelihood

Lp (ΘΘΘ|YYY 1, . . . ,YYY N) =
G

∑
g=1

πgψ
(
YYY i;µµµgi,ΩΩΩgi + IIIσ

2
e
)
−P (µ1, . . . ,µG) , (1)

where ΘΘΘ= {πg,µg,ωg,σ
2
e}g=1,...,G is the parameter set of interest, µµµgi =(µg (ti1) ,

. . . ,µg (tini))
T , ΩΩΩgi = {ωg (tki, tli)}k,l=1...,ni , ψ(·;µµµ,ΣΣΣ) is the multivariate Gaus-

sian density distribution with mean µµµ and covariance ΣΣΣ, and P (·) is a penalty



function defined as

P (µ1, . . . ,µG)= λL ∑
1≤g≤g′≤G

∫
T

τg,g′ (t) |µg (t)−µg′ (t) |dt+λs

G

∑
g=1

∫
T

(
µ(s)g (t)

)2
dt,

(2)
where λL,λs ≥ 0 are tuning parameters, τg,g′ are prespecified weight functions,
and µ(s)g (·) denotes the sth-order derivative of µg. The first element of the right-
hand side of Equation (2) is the functional adaptive pairwise fusion penalty
(FAPFP). It allows the pair of cluster means to be equal over a specific por-
tion of the domain that is considered noninformative for separating the cluster
means. Thus, the SaS-Funclust method is able to detect, for each cluster pair,
the portion of the domain that is noninformative for the cluster analysis, i.e.,
the portion of the domain where the corresponding cluster means are not fused.
The last term in Equation (2) is a roughness penalty, applied on the cluster
means to further improve the interpretability of the analysis by constraining,
with a magnitude quantified by λs, the cluster means to own a certain degree
of smoothness, measured by the derivative order s. A specific expectation-
conditional maximization (ECM) algorithm is used to maximize the objective
function in Equation (1), after some structure is imposed on fi. Then a cross-
validation procedure is proposed to select the appropriate model parameters.
Further details are in Centofanti et al., 2023.

3 A Real-data Example: Berkeley Growth Study Data

In this section, the SaS-Funclust method is applied to the growth dataset from
the Berkeley growth study. In this study, 31 height measurements of 54 girls
and 39 boys are available from ages 1 through 18. The aim of the analysis is
to cluster growth velocities from age 2 to 17. Figure 1 shows (a) the interpo-
lating growth velocity curves for all the individuals, (b) the estimated cluster
means, and (c) the clustered growth curves for the SaS-Funclust method. The
estimated cluster means are fused over the first portion of the domain, whereas
they are separated over the remaining portion. This implies that on average,
the two identified clusters do not differ over the first portion of the domain,
which can be, thus, regarded as noninformative. The separation between the
two groups arises over the remaining informative portion of the domain, where
two sharp peaks of growth velocity arise, instead. The latter peaks are referred
to as pubertal spurts in the medical literature and in this regard, the obtained
results highlight two primary timing/duration groupings. The male pubertal
spurt occurs later and lasts longer than the female one. The estimated cluster
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Figure 1: (a) Growth velocities, (b) estimated cluster curve means, and (c)
curve clusters for the SaS-Funclust in the Berkeley growth study dataset.

means from some competing methods do not allow for a similar straightfor-
ward interpretation.
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