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ABSTRACT: Class imbalance is a common problem in functional clustering where
some clusters have significantly more curves than other clusters. In such cases, most
clustering algorithms tend to prioritize the majority class, resulting in sub-optimal
cluster assignments. We propose a functional iterative hierarchical clustering ap-
proach to address the issue of class imbalance in functional data clustering. The
performance of the proposed approach is compared with existing approaches. The
proposed approach yields more accurate cluster assignments and a more precise ap-
proximation of the average trajectory of the curves within each cluster.
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1 Introduction

Unsupervised functional clustering techniques classify a sample of curves into
homogeneous groups of curves, without prior knowledge of the true under-
lying clustering structure. The two common approaches for clustering func-
tional data are: to obtain an approximation of the functional data in a finite-
dimensional space and then use traditional clustering tools to cluster the result-
ing vectors (Chen et al., 2012 and Wang & Xu, 2017) or to perform functional
model-based clustering (Bouveyron & Jacques, 2011, Bouveyron et al., 2015,
and Centofanti et al., 2023). See Jacques & Preda, 2014 for detailed reviews
of functional clustering methods.

The problem of class imbalance occurs when the number of curves in one
cluster significantly exceeds the number of curves in another cluster, posing
a difficult challenge for most functional clustering algorithms. Minor clusters
are often classified incorrectly into major clusters, which results in inaccurate
cluster assignments and a poor approximation of the average trajectory of the
curves within each cluster.

By extending Carey et al., 2016 iterative hierarchical clustering method to
a functional data context, we provide an approach for clustering imbalanced
functional data.



2 Functional Iterative hierarchical clustering

The observations of the behavior of the curves at discrete points are subject to
measurement error, that is yi, j = xi(ti, j)+ εi, j, where ti, j denotes the finite set
of times from which one samples the ith curve and the errors εi, j are assumed
to be independently distributed with mean 0 and a constant variance σ2. Given
the observed values yi, j for i = 1, . . . ,N and j = 1, . . . ,Mi. The functional IHC
algorithm performs the following steps:

1. Reconstruct the functional form from the discrete observations: Ap-
proximate the curves via a basis function expansion, that is, x̂i(t) =
∑

K
k=1 ckφk(t), and estimate the coefficients of the basis function expan-

sion {ck : k= 1, . . . ,K} using the standard penalized least squares smooth-
ing approach of Ramsay & Silverman, 2005.

2. Cluster the first derivative of the curves: The estimated first deriva-
tive of the curves evaluated at the points ttt = [t1,1, . . . , tN,M] are then given
by the N ×M matrix A = ∑

K
k=1 ĉkDφk(ttt), where M = max(Mi) for i =

1, . . . ,N. Let αmin and αmax be the minimum and maximum of the Spear-
man rank correlation between all the possible pairs of the rows of A.
Define [αmin, . . . ,αmax], as a grid of Q equally spaced values from αmin
to αmax. Cluster the rows of A using the iterative hierarchical clustering
method proposed in Carey et al., 2016. Select the optimal αopt so that
the value of the Davies-Bouldin index is minimized.

3 Simulations

The simulated sample curves Xi are realizations of a Gaussian process with the
Matérn covariance function C(s, t) = 0.2×exp(−0.3∥s− t∥), over the domain
I = [0,15]. To obtain six simulated groups of curves we define six different
mean functions: sin(2πt), cos(2πt), sin(4πt +π/2), sin(4πt −π/2), sin(3πt +
π/3) and sin(6πt − π). The six clusters are large, medium, and small in
size, that is N = 500, 500, 200, 15, 10, 3. The sample data are given by, Yi, j =
Xi(ti, j)+ εi, j for i = 1, . . . ,N and j = 1, . . . ,Mi, where εi, j is a normally dis-
tributed random variables with mean 0 and standard deviation σε. We assume
that ti, j are obtained from an equally spaced discretization of the domain and
that this is the same for all curves.

The functional IHC is compared with the following eight state-of-the-art
functional clustering methods: funFEM (Bouveyron et al., 2015), funHDDC
(Bouveyron & Jacques, 2011); SaS-Funclust (Centofanti et al., 2023), func-
tional EMCluster (Chen et al., 2012), functional kCFC (Chiou & Li, 2007),



FADPclust1 and FADPclust2 (Wang & Xu, 2017). Table (1) presents the accu-
racy of the clustering methods measured by the average Adjusted Rand Index
(µARI) and the average Davies-Bouldin index (µDB). The adjusted rand index

Table 1. The average Adjusted Rand Index (µARI); and Davies-Bouldin index µDB for
all eight functional clustering methods

Method µARI µDB µARI µDB µARI µDB µARI µDB
M=15 M=200

σε = 0.05 σε = 0.15 σε = 0.05 σε = 0.15
funIHC 1.00 0.84 0.99 0.86 0.99 0.82 0.99 0.89
funFEM 0.55 6.18 0.55 0.99 0.53 0.86 0.52 0.95
funHDDC 0.53 1.08 0.47 1.11 0.30 3.29 0.28 3.41
SaS-Funclust 0.53 1.08 0.53 0.97 0.35 3.67 0.15 3.11
Functional EMCluster 0.94 1.08 0.96 1.01 0.68 1.76 0.69 1.90
Functional kCFC 0.97 1.08 0.90 1.52 0.54 1.64 0.64 2.10
FADPclust1 0.68 1.66 0.71 1.14 0.69 1.10 0.71 1.15
FADPclust2 0.68 1.02 0.68 1.16 0.74 0.94 0.71 1.06

ranges from 0 to 1 and measures the similarity between the clustering assign-
ment and the true group structure. Clustering assignments are more accurate
when the value is larger. The Davies-Bouldin index is based on the ratio of
within-cluster distances to between-cluster distances. Clusters that are farther
apart and less dispersed will result in a lower index. The funIHC obtains the
highest adjusted rand index and the lowest Davies-Bouldin index. FunIHC
is the only approach to correctly identify the number of curves in each clus-
ter and the true average temporal pattern. FunFEM, FunHDDC, Sasfunclust,
Functional EMCluster, and Functional kCFC provide a good approximation of
the average temporal patterns for the larger clusters but provide a poor approx-
imation for (N < 200). FADPclust1 and FADPclust2 miss-classifies the small
and medium clusters into the larger clusters resulting in poor approximations
of the average temporal pattern for all clusters.

4 Conclusion

A functional iterative hierarchical clustering approach is proposed that can ef-
fectively address the issue of class imbalance in functional data clustering. The
proposed approach is shown to outperform existing approaches in terms of the



accuracy in the cluster assignments and the approximations of the average tem-
poral pattern of the cluster members.
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