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ABSTRACT: We propose a method to test locally functional data whose domain is
a Riemaniann manifold. The procedure is based on testing hypotheses on a suitably
defined family of balls of the domain, and can be applied to a vast variety of different
functional tests. The final result is an adjusted p-value function defined on the same
domain as functional data, and controlling the ball-wise error rate.
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1 Introduction

In functional data analysis (FDA), the object of statistical analysis are typically
functions modeled as random elements of a Hilbert space. Inference on func-
tional data is particularly challenging since it deals with elements of infinite di-
mensional spaces. A currently popular topic in FDA is local inference, i.e., the
continuous statistical testing of a null hypothesis along the domain of data. The
principal issue in this topic is the infinite amount of tested hypotheses, which
can be seen as an extreme case of multiple testing. Local inferential techniques
are either based on simultaneous confidence bands (Liebl & Reimherr, 2023),
or on the definition of a p-value function, that is a function assigning a p-value
at each point of the domain. Methods based on such a p-value function typi-
cally adjust p-values for guaranteeing a control of a quantity related with the
error rate on the whole domain, that could either be related to the family-wise
error rate (e.g., Pini & Vantini, 2017, Abramowicz et al., 2022) or to the false
discovery rate (e.g., Lundtorp Olsen et al., 2021). In particular, Pini & Van-
tini, 2017 introduced the interval-wise testing procedure which performs local
inference for functional data defined on an interval domain, where the output



is an adjusted p-value function that controls for type I errors on intervals. The
interval-wise testing procedure provides a control of the interval-wise error
rate, that is the probability that, if on an interval the null hypothesis is true, at
least one part of it is detected as significant.

Most of the current literature focuses on functional data whose domain is
an interval of R. The few exceptions considering more complex domains are
based on the false discovery rate control (Lundtorp Olsen et al., 2021), or on
an asymptotic control of the family-wise error rate (Abramowicz et al., 2022).
In this work, instead, we extend the method proposed by Pini & Vantini, 2017
to functional data defined on manifold domains. The resulting method will
provide a finite sample control of the ball-wise error rate, which is an extension
of the interval-wise error rate to the multidimensional setting.

We extend this idea to a general setting where domain is a Riemannian
manifolds. This requires new methodology such as how to define adjustment
sets on product manifolds and how to approximate the test statistic when the
domain has non-zero curvature. The resulting method will provide a finite sam-
ple control of the ball-wise error rate, which is an extension of the interval-wise
error rate to the multidimensional setting. This extended abstract describes an
overview of the proposed statistical method. More details on the method, its
theoretical properties, a simulation and an application to real data can be found
in Lundtorp Olsen et al., 2023.

2 Methods

We will assume that the domain of our functional data are Riemannian mani-
folds. In the following, we give a definition of the manifold, as well as the one
of ball, that will be of particular importance to define the error control provided
by the method.

Definition 1 A manifold M of finite dimension is a smooth manifold together
with a smoothly varying 2-tensor field g on M which is an inner product at
each point. The inner product g defines a metric d and a measure µ on M,
which we will refer to as the Riemannian metric and the Riemannian measure,
respectively.

Definition 2 For a given manifold M with metric d, define the ball of radius ε

and center x as

B(x,ε) = {y ∈ M|d(x,y)< ε}, x ∈ M,ε > 0.



Let M be a manifold with metric d. We assume that we have observed n
smooth functional data ξ1, . . . ,ξn: M 7→ R. For simplicity of notation, here,
functional data are assumed to be observed on a single manifold domain. We
refer to Lundtorp Olsen et al., 2023 for a more general version, where the
domain can be as well a product of a finite number of manifolds.

Assume that we would like to test at every point x ∈ M, a pointwise null
hypothesis H0(x), against an alternative hypothesis H1(x). We further assume
that hypotheses can be tested by means of a pointwise test statistic T (x), which
is stochastically greater under H1(x) than under H0(x). Finally, let p(x) denote
the unadjusted p-value of the test at point x.

The procedure to define an adjusted p-value function on this setting is
based on testing the null and alternative hypothesis on every ball of M of size
ε≤ r, with a fixed r (ball-wise testing), and then adjusting the p-values in order
to obtain a desired multiplicity control.

Ball-wise testing. Let B = B(y,ε) be a fixed ball in M. We define the null
and alternative hypotheses on the ball as

HB
0 : ∩x∈B(y,ε)H0(x); HB

1 : ∪t∈B(y,ε)H1(x). (1)

The hypotheses 1 can be tested with the integral test statistic

T B =
∫

B
T (x)dµ(x) (2)

Let pB be the p-value of the obtained test on ball B. In the ball-wise testing
phase, the null and alternative hypotheses HB

0 and HB
1 are tested on every ball

B ∈ M with radius ε ≤ r, with a fixed r. The constant r is a parameter of the
procedure, and will affect the power and error control of the obtained proce-
dure. We refer to Lundtorp Olsen et al., 2023 for a discussion on the effect of
the parameter in the test results.

We here give the general definition of ball-wise hypotheses and p-values.
Note that the tests can be performed with any procedure, given that the ob-
tained p-values are exact. In particular, in Lundtorp Olsen et al., 2023 we
propose to use permutation tests for testing pointwise and ball-wise hypothe-
ses.

Adjustment. Let B denote the set of all balls B ∈ M with radius ε ≤ r. The
adjusted p-value at point x ∈ M is defined as

p̃(x) = sup
B∈B:x∈B

pB. (3)



In particular, the null hypothesis H0(x) is rejected by p̃(x) at level α only if
all null hypotheses on balls B ∈ B that contain the point x are also rejected at
the same level. This is sufficient to guarantee that the procedure controls the
ball-wise error rate Lundtorp Olsen et al., 2023, that is, ∀α ∈ (0,1):

∀B ∈ B : HB
0 is true, P(∃x ∈ B : p̃(x)≤ α)≤ α. (4)
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