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ABSTRACT: In empirical research involving latent Markov models, there is a ten-
dency of research communities building up expertise on one particular class of such
models, then shoehorning any given data set into that very model formulation. This
talk attempts to overcome this myopia by offering a unifying view on what otherwise
are often considered completely separate model classes — from hidden Markov mod-
els to Cox processes — thereby providing guidance as to how a latent Markov model
formulation can be suitably tailored to the data at hand.
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1 Introduction

Over the last two decades, latent Markov models™ have taken applied research
by storm. This success story can be explained by their intuitive appeal, their
mathematical tractability, and the various types of inference they allow for.
Yet, while empirical researchers are well-acquainted with the various flavours
of regression, the same cannot be said for latent Markov models. Instead, a
tendency can be recognised that researchers focus on building expertise on
one particular type of such models, and then shoehorn any given data set into
the model they happen to know best.

The challenge of identifying a suitable model formulation for a given data
set primarily concerns two choices to be made: whether to use a discrete-time
or a continuous-time model formulation, and whether to assume a discrete
or a continuous state space. Classifying different model classes along these
two dimensions, we provide an overview of the most relevant classes of latent

*1.e. stochastic process models for sequential data driven by latent Markovian processes;
note these may also be referred to as, inter alia, state-space models, hidden Markov models,
doubly stochastic processes, or dependent mixture models — we use the label “latent Markov
model” as it appears to be a good umbrella term for all special cases considered in this paper



Markov models and emphasise that the inferential methods for these different
classes are for the most part effectively identical, such that there is no reason
why researchers should focus on any one class of these models.

2 Overview of latent Markov model formulations

Table 1 attempts to classify the main types of latent Markov models accord-
ing to the type of states, either discrete or continuous, the observed process
is assumed to be driven by, and the role of time, i.e. the mathematical opera-
tionalisation of the times at which the sequential observations are made.

Table 1. Classification of six popular classes of latent Markov models according to
the respective role of time and space.

discrete states continuous states
discrete time (A) (basic) hidden (B) (basic) state-space
Markov model model
continuous time, (C) continuous-time (D) continuous-time

non-inform. obs. times  hidden Markov model  state-space model

continuous time, (E) Markov-modulated (F) Cox process
inform. obs. times Poisson process

The simplest case (A) arises when the states are discrete and the process is
modelled in discrete time, i.e. as a time series {X; };—; 7. In its basic depen-
dence structure, the corresponding hidden Markov model (HMM) is defined by
an N-state homogeneous Markov chain {S; }[:]7-4--,T as the state process, spec-
ified by the initial distribution 8 = (3y,...,8y), 8 =Pr(S; =1i), and the N x N
transition probability matrix I" = (;;), as well as the N emission distributions
f1(x;),- .-, fn(x;:), which are selected by the state process. An intuitive exam-
ple is animal movement, where the observations xi, . ..,x7 could be the hourly
step lengths of an animal and the states the behavioural modes (cf. Beumer
et al., 2020). HMMs are mathematically tractable, as recursive techniques can
be used for likelihood evaluation, state decoding, and forecasting.

In many settings, it will however not be reasonable to assume that the state
process {S;} is discrete-valued. For example, the volatility underlying share
returns evolves gradually over time. In such cases, it is more adequate to model



the discrete-time state process {S; },—1,.. 7 as an autoregressive process,

si=0(s,—1 —p) +u+og, & %N(Oa 1),

with long-term mean u € R, persistence parameter —1 < ¢ < 1 and standard
deviation ¢ > 0 of the error process, and with the distribution of x; in some
way depending on s;. Such a model is commonly referred to as (B) state-space
model (SSM), and there are many different techniques for estimating the as-
sociated parameters, ranging from the Kalman filter to MCMC-based methods
(Auger-Méthé et al., 2021). While this plethora of estimation techniques can
be intimidating for practitioners, it is worth pointing out that SSMs can conve-
niently be approximated using HMMs with a large state space.

Basic HMMs or SSMs both need to be modified when the intervals be-
tween observation times are not of the same length. Such temporally irregular
sampling schemes are quite common for example in medical or survey data.
If in such cases a discrete state space seems adequate, then {S; }o<;<7 can be
modelled as a continuous-time Markov chain, specified by the infinitesimal
generator matrix Q = (g;;), with state transition intensities

. Pr(stJrAt =j ‘ St = i)
=1
4= g% At ’

leading to (C) a continuous-time HMM. If instead the states ought to be mod-
elled as continuous-valued, then a stochastic differential equation (SDE) can
be used, e.g. the Ornstein-Uhlenbeck process

ds; = 0(u—s;)dt +cdwy,

where w; is the Brownian motion and 6 > 0 controls the strength of rever-
sion to the long-term mean u. Such a model would most naturally be labelled
(D) a continuous-time SSM. For inference, recursive techniques similar to the
discrete-time case are available (Jackson et al., 2003; Mews et al., 2022b).
Finally, we need to distinguish cases where the observation times them-
selves are informative, e.g. in medicine, when longitudinal observations are
made whenever a patient goes to a doctor, likely indicating sickness. In such
cases, (E) Markov-modulated Poisson processes (MMPPs) can be used to model
a system traversing through a finite state space, with the observation times
modelled as a Poisson arrival process with rate A;, depending on the state s,
currently active. Such a model can be further extended by including marks, say
for modelling biomarkers measured at each consultation (Mews et al., 2022a).



If assuming only finitely many states of such a process is inadequate, then the
continuous-time Markov chain model for {S;} can again be replaced by an
SDE, leading to the class of (F) Cox processes.

3 Conclusion

By classifying latent Markov models according to the assumptions made con-
cerning time and (state) space, we promote a more unified view on what other-
wise are often considered fairly separate model classes. This categorisation is
far from perfect — for example, as it stands it does not have a place for SDEs
driven by latent states — however, we hope that it can provide some guidance
for empirical researchers when making their modelling decisions. The main
point we are trying to make is that “you should model the process that gives
rise to the data, not shoehorn the data into a model you happen to have at hand”
(quote by David L. Borchers, pers. communication) — and to be able to do the
former, it is important to have a big picture view of the model classes available.
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