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ABSTRACT: A scalable variational inference approach for stochastic block models is
proposed. The approach is based on a case-control approximation of the likelihood
function, which is an unbiased estimator of the full likelihood. Using the case-control
likelihood under a variational inference perspective allows us to strongly reduce the
computational complexity, making model estimation feasible for large networks. We
evaluate the performance of the proposed algorithm using both simulated and real data
coming from a Facebook derived social network.
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1 Introduction

Stochastic block models (SBMs; e.g. Snijders & Nowicki, 1997) represent a
powerful tool for modeling social network data that can discover communities
and clusters of nodes according to their social behavior. Under this formula-
tion, the nodes in the network are assumed to belong to a finite number of la-
tent blocks, identified by individual-specific discrete latent variables, with the
probability of connection between two nodes only depending on their block
membership.

The predominant method of inference for these models is based on a varia-
tional approximation of the model log-likelihood (Daudin et al., 2008). How-
ever, the complexity of the corresponding estimation algorithm, keeping the
number of blocks fixed, is of the order of O(n2), where n is the number of
nodes. This implies that model estimation is computationally intractable for
large-scale networks, limiting its use to a narrow range of applications.

Here, following a previous approach (Roy et al., 2019), we propose a case-
control approximation of the target function maximized under the variational
inference approach, which leads to a strong reduction of the computational
complexity, so that the resulting estimation algorithm may be efficiently ap-
plied to large networks. The effectiveness of our proposal will be illustrated
via simulation and through a real data application.



2 Stochastic block models

Let YYY denote an adjacency matrix referred to n nodes and whose generic el-
ement, Yi j, is a binary random variable that is equal to 1 if there is an edge
between nodes i and j and to 0 otherwise; yyy and yi j, i, j = 1, . . . ,n, are used
to denote the realizations of YYY and Yi j, respectively. We focus on binary undi-
rected networks with no self-loops, leading to a symmetric adjacency matrix
with missing values on the main diagonal.

SBMs assume that nodes in the network belong to one out of k distinct
unobserved blocks; these are described by means of independent and identi-
cally distributed, node-specific, latent variables Ui, i = 1, . . . ,n, defined over
the discrete support {1, . . . ,k} with probabilities p(Ui = u) = πu, u = 1, . . . ,k.

SBMs also postulate a local independence assumption between nodes:
conditional on the latent variables Ui and U j, responses Yi j are assumed to
be independent Bernoulli random variables with success probabilities given
by φuv = p(Yi j = 1|Ui = u,U j = v) . Therefore, the conditional distribution of
Yi j only depends on the block memberships of nodes involved in the relation.
Moreover, parameters φuv must satisfy the invariance property with respect to
reflection, that is, φuv = φvu for all u < v.

2.1 Classical variational inference

Let θθθ denote the vector of all model parameters. For parameter estimation, we
may rely on the maximization of the following likelihood function:

L(θθθ) = p(yyy) = ∑
uuu

p(yyy|uuu)p(uuu), (1)

where uuu = (u1, . . . ,un)
′ is a realization of the random vector UUU = (U1, . . . ,Un)

′,
and

p(yyy|uuu) =
√

∏
i≤n

∏
j 6=i

p(yi j|ui,u j), p(uuu) = ∏
i≤n

πui .

As known, the likelihood function in equation (1) involves summation over
the configurations of all latent variables in the model, so that the computational
burden is prohibitive also when dealing with networks of a very limited size.
Moreover, also the posterior expectation of the complete data log-likelihood,
which is used within the Expectation-Maximization (EM) algorithm, is in-
tractable. Therefore, a classical solution is to rely on a variational approxi-
mation of the EM algorithm (VEM; Daudin et al., 2008), which is based on



the maximization of the following lower-bound of the likelihood function in
equation (1):

J (θθθ) = logL(θθθ)−KL[R(uuu) || p(uuu|yyy)], (2)

where p(uuu|yyy) denotes the (intractable) posterior distribution of the latent vec-
tor uuu given the observed adjacency matrix yyy, R(uuu) denotes its approximation,
and KL[· || ·] is the Kullback-Leibler divergence between these two distribu-
tions. A typical choice for R(uuu) is that based on the conditional independence
between the latent variables in the network, given the observed data, imply-
ing that R(uuu) = ∏i≤n h(ui,τττi), where h(·,τττi) denotes a Multinomial probability
distribution with parameters 1 and τττi = (τi1, . . . ,τik)

′. The generic element of
τττi, say τiu, can be interpreted as an approximation of p(Ui = u|yyy).

Parameter estimates are obtained by alternating two separate steps until
convergence of the algorithm. In the variational E-step, J (θθθ) is maximized
with respect to τττi, i = 1, . . . ,n, with θθθ fixed at the values obtained from the
previous iteration, under the constraints that these quantities are non-negative
and ∑u τiu = 1 for all i. In the variational M-step, J (θθθ) is maximized with
respect to θθθ, with the τττi’s fixed at the values obtained from the E-step.

Besides the several advantages of the variational approximation procedure,
the complexity of the iterative algorithm used for deriving parameter estimates,
as already mentioned, is of order O(n2) and this may lead to a excessive com-
putational effort when dealing with large-scale networks.

3 Proposed case-control variational inference

The case-control idea derives from cohort studies where the aim is to compare
a group having the outcome of interest (“case”) with a control group with re-
gard to one or more characteristics. Usually, the presence of case subjects is
relatively rare compared to that of control subjects, and it is impossible or too
expensive to select a simple random sample with enough cases to draw con-
clusions. Accordingly, in a case-control study, all available cases are collected
and the corresponding controls are sampled from the corresponding cohort.

In the context of network data, we can view the presence of connections
(that is, the 1’s) as cases and the absence of connections (the 0’s) as controls,
and we can rely on this analogy to propose a case-control approximation of the
target function in (2). In particular, for every node i, let A i denotes the random
subset of { j : yi j = 0, j 6= i}, with ni0 = ∑ j 6=i(1− yi j) being the total number
of nodes that are not connected with node i. We also define B i as the random
subset of { j : yi j = 1, j 6= i}, with ni1 =∑ j 6=i yi j being the total number of nodes



connected with i. We may derive the following approximation of p(yyy|uuu):

p̃(yyy|uuu) =

√√√√√∏
i≤n

(∏
j∈A i

p(yi j|ui,u j)

)ni0/|A i|(
∏
j∈B i

p(yi j|ui,u j)

)ni1/|B i|.
Since p̃(yyy|uuu) is based on random samples from the 1’s and 0’s, we get an
unbiased estimator of p(yyy|uuu). The case-control approximate likelihood is then
defined as L̃(θθθ) = ∑uuu p̃(yyy|uuu)p(uuu) and the corresponding lower bound may be
derived as in equation (2), leading to the approximate target function J̃ (θθθ).
Given the assumption of a posteriori independence of the latent variables and
denoting by wi0 = ni0/ |A i| and wi1 = ni1/ |B i| the sampling rates, we have

J̃ (θθθ) = ∑
uuu

R(uuu) log[p(uuu)p̃(yyy|uuu)]−∑
uuu

R(uuu) logR(uuu) = ∑
i≤n

∑
u≤k

τiu logπu

+
1
2 ∑

i≤n
∑
u≤k

τiu

[
wi0 ∑

j∈A i

∑
v

τ jv log(1−φuv)+wi1 ∑
j∈B i

∑
v

τ jv logφuv

]
−∑

i≤n
∑
u≤k

τiu logτiu.

Parameter estimation may be then obtained by means of a modified VEM
algorithm that maximizes J̃ (θθθ). Denoting by m < n the average number of
1’s and 0’s selected for each node, the complexity of the proposed estimation
algorithm reduces to O(n×m). For large networks that are usually sparse, we
can randomly choose a very small subset of 0’s, so as to obtain a strong reduc-
tion of the computing time. Moreover, alternative sampling schemes based on
descriptive network statistics may also be considered in order to increase the
efficiency of the algorithm and the accuracy of the estimates.
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