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ABSTRACT: While tree-based regression methods are popular in practice, they miss
a time series component. We thus combine regression trees with hidden Markov mod-
els (HMMs) and construct a hybrid model that can effectively capture serial correla-
tion and the complex dependencies between the input and output variables, while also
providing interpretable results. In a case study, we demonstrate that such an approach
offers a powerful and flexible tool for modeling financial data. However, the presented
method can be employed in many more fields, e.g. in ecology or sports.
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1 Introduction

Tree-based regression models are a popular machine learning tool as they can
capture complex interaction effects and yet can be easily interpreted. Com-
bining these models with hidden Markov models (HMMs), which serve for
modelling time-series data with serial correlation, is an approach that uses
the strengths of both techniques. The scaffold of this model is the assump-
tion that, for each t = 1, . . . ,T , the observed time series data {Yt}t=1,...,T is
generated by one of N regression trees built by M input variables. Each of
these trees corresponds to one of the N states selected by the hidden state
process {St}t=1,...,T . We model the latter by an N-state, first-order Markov
chain with initial distribution δi = Pr(S1 = i) and state transition probabilities
γi j = Pr(St = j | St−1 = i), i, j = 1, . . . ,N. Putting these properties together,
this results in a model that probabilistically switches between regression trees.



2 Model fitting with the EM algorithm

To fit the model, we use the EM algorithm (Zucchini et al., 2016). We represent
the sequence of states {St}t=1,...,T by the indicator variables ui(t) = I(St = i)
and vi, j(t) = I(St−1 = i,St = j), i, j = 1, . . .N, t = 1, . . . ,T . Then, we can write
the joint log-likelihood of the observation process, {Yt}t=1,...,T , and the states
(i.e. the complete-data log-likelihood) as
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The EM algorithm switches between E- and M-Step, i.e. between estimating
the ui(t)’s and vi, j(t)’s given the current parameter estimates and maximizing
the joint log-likelihood l(θ). We address the problem of local maxima by
running the EM algorithm with different starting values.

Still to discuss is the precise form of pi(yt) = Pr(Yt = yt | St = i). For regu-
lar HMMs, this expression is given by the density or probability function of the
chosen state-dependent distribution. As we do not make any distributional as-
sumption, we have to find an appropriate expression for regression trees. In the
following, we will present two possible procedures: The obvious approach is
to employ the CART algorithm (Breiman et al., 1984), to use weights accord-
ing to the actual state probabilities and to fit regression trees by minimizing the
corresponding residual sum of squares (Therneau & Atkinson, 2019). Then,
we assume pi(yt) to be normally distributed where the mean equals the leaf
node’s means

µt =
1

nm̃i
∑

j=1,...,T
I(x j ∈ Rm̃i) y j

with m̃i ∈ 1, . . . ,Mi being the node for which xt ∈ Rm̃i and nm̃i denoting the
number of observations in region Rm̃i for the tree of state i. Moreover, the
standard deviation σt is regarded as a hyperparameter to tune. In the second
approach, we do not employ classical regression trees but distributional trees
which constitute as a specific form of regression trees. The difference is the
way of splitting. While for regression trees the splitting rule only optimizes
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Figure 1. The time series of log-returns of the S&P 500 from 30th August, 2000 until
30th December, 2022 are displayed. The most likely states under the correspond-
ing model (left panel: Regular HMM; middle panel: HMM-RT; right panel: HMM-
disttree) are colorized.

according to the means between the leaf nodes, for distributional trees the data
are split into homogeneous groups with respect to a full parametric distribution
(Schlosser et al., 2019). Like in the first approach, we replace pi(yt) with the
density of a normal distribution, however, the standard deviation is no longer
a hyperparameter. We fit such distributional trees using the R package disttree
(Schlosser et al., 2021).

3 Application to financial data

To illustrate the usefulness of the proposed approach, we consider a case study
on financial data. In financial markets, the terms “bullish” and “bearish” de-
scribe the overall sentiment of the market participants towards a particular asset
or the market as a whole. In an HMM context, we can use these two terms as
proxies for latent states. A bullish market is characterized by a calm period of
moderately rising prices, while a bearish market is marked by nervousness and
oscillating, but mostly falling prices. We apply the presented methods to the
daily S&P 500 log-returns from 30.08.2000 – 30.12.2022 as the observed time
series and use two input variables, the daily oil and gold log-returns.

After fitting both models to the data, we use the Viterbi algorithm (see Zuc-
chini et al., 2016) for state decoding. We can see in Figure 1 (middle panel)
that the classical regression tree approach is not able to capture the bullish
and bearish markets as the model switches between states within these market



phases. In contrast, the distributional tree recognizes calm and nervous mar-
kets (right panel of Figure 1) which builds the basis for further analysis, e.g.
the prediction of future log-returns. When comparing the distributional tree
method to a regular HMM with a normal distribution as the state-dependent
distribution (left panel of Figure 1), significant similarities can be observed.
However, in the presence of more covariates, the distributional tree regression
method automatically chooses variables and interactions (see Schlosser et al.,
2019) and, thus, circumvents the usual selection problems.

4 Discussion

Using tree-based regression in the framework of HMMs presents a promising
approach for modeling complex data sets with a wide range of input variables.
Specifically, our findings indicate that employing distributional trees in the EM
algorithm outperforms classical regression trees in this context. Differences in
other distribution parameters than the mean (such as the standard deviation)
can only be captured by distributional trees, which provide much more flexi-
bility without being computationally more costly. In particular, the HMM-RT
approach is twice as fast, but also requires cross-validation via the standard
deviation, which is why in the end the HMM-disttree method is more efficient.

The approach presented herein should be considered as merely a starting
point for establishing connections between HMMs and machine learning algo-
rithms within the regression domain. For instance, the combination of HMMs
and random forests could potentially mitigate concerns related to overfitting.
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