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ABSTRACT: In large-scale assessments, students’ ability is usually evaluated using
multiple test forms, which require the use of several items. In this context, calibrating
items before the official tests can be difficult for different reasons. A solution is to
calibrate items during the first test administration and then use these estimates in the
subsequent ones. However, this approach does not consider that the populations could
be significantly different in terms of average ability, which is particularly problematic
when the final output of this process is a merit ranking. Our findings show that, on one
side, calibrating item parameters on populations with differences in ability does not
affect the final merit ranking and, on the other side, the differences in item parameter
estimates are significant.
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1 Introduction

In large-scale assessments, it is common practice to construct multiple test
forms so as to increase test security and allow for tests to be implemented
on different exam dates and times (van der Linden & Adema, 1998). This
organisation requires using many items (in order to construct parallel versions
of the same test for each group) and the application of equalisation methods
to make the scores obtained on different test forms comparable, a relevant
concern when the final output of this process is a merit ranking. Additionally,
field trials are usually required to calibrate test items when using IRT models
(Hambleton et al., 1991) to assess subjects’ ability in large-scale assessments.

It is worth understanding that calibrating items before official tests could
be problematic for different reasons. Among these, the set of items used is
usually not large enough to give the possibility of using in advance items that
should then constitute the official tests. A possible approach is to calibrate



items on the first group of subjects and then use the item parameter estimates
to assess the ability of students who are subsequently administered the tests.

A problem that might arise in some contexts, such as university entrance
tests, is that the population on which items are calibrated at the baseline may
differ significantly from those at subsequent administrations. For example, it
is reasonable to assume that students who took the test at the baseline have
lower abilities than those who took it later, at least because they had more time
to study and became familiar with the type of test.

The present work aims at answering the following research questions:
RQ1 Is tests equalisation, and consequently the merit ranking, affected by

differences in the population average ability?
RQ2 How does calibrating items on a certain population affect estimates of

ability in a population that differ for the average ability levels?

2 Statistical Model

In certain contexts, the structure of the test is characterised by the presence
of subsets of questions concerning the same topic (referred to as testlets),
which implies a violation of the hypothesis of local independence of the items
(van der Linden & Hambleton, 2013). Thus, models capable of managing the
multidimensionality of the latent trait are required.

In multidimensional item response theory (Reckase, 2009), the bifactor
(BF) model (Holzinger & Swineford, 1937) is often used due to its good per-
formance on different kinds of data. In the BF model, a common (i.e., generic,
primary) latent variable is assumed to underlie all test items. In addition, spe-
cific latent variables (one for each testlet) account for the residual dependence
remaining after considering the primary latent construct and due to the pres-
ence of the testlets. Primary and specific latent variables are orthogonal.

Let us consider a set of individuals i = 1, . . . ,n taking a test with j =
1, . . . ,J items divided into s= 1, . . . ,S sections. In the two-parameter BF model
for dichotomous items Yi js, the probability that test taker i correctly answer
item j of section s is defined as

P(Yi js = 1|θ0i,θsi) =
1

1+ exp(−[d j +a0 jθ0i +as jθsi])
,

where θ0 is the primary latent variable, θs is the s-th specific latent variable, d j
denotes the difficulty parameter of item j, a0 j and as j represent the discrimina-
tion parameters of item j on the primary and specific constructs, respectively.
If item j loads on specific factor s, as j ̸= 0, otherwise as j = 0.



3 Simulation Study

To answer the two research questions RQ1 and RQ2, we performed a simula-
tion study. A test with 50 dichotomously-scored items was generated for the
study, including four testlets composed of 7, 15, 15, and 13 items, respectively.
Parameters a0 j were sampled from a log-normal distribution logN(0,0.5) con-
strained to [0.5,2]. Moreover, for each testlet parameters as j were sampled
from a uniform distribution [0.5,0.7], corresponding to a moderate degree of
local dependence between items. Difficulty parameters d j were sampled from
a normal distribution N(0,1). We assume that the same set of items is admin-
istered in two different time occasions.

The generic and the specific latent abilities θ0 and θs were generated from
a mixture of two independent Gaussian distributions:

f (θ) = πA fA(θ)+πB fB(θ)

where f (.) is the normal density and πA and πB are the mixture component
weights, with πA+πB = 1. The mean of the mixture is µM = πAµA+πBµB, and
its variance is σ2

M = πAσ2
A +πBσ2

B +
[
πAµ2

A +πBµ2
B − (πAµA +πBµB)

2
]
.

We assume the mixture components fA and fB have mean µA = −2 and
µB = 2 respectively, and common variance σ2 = 1. We simulate two groups of
subjects with different ability distributions: the baseline group (group 1) with
80% of subjects from the first component and 20% from the second one, and
a second time occasion group (group 2) with 20% of subjects from the first
component and 80% from the second one. Note that with this configuration,
the mixture distributions of groups 1 and 2 have different means but equal
variance. For each group, N = 10,000 response patterns were simulated. In
addition, a set of 500 subjects was assumed to repeat the test, and thus, they are
present in both groups, with an ability improvement of 0.5 in group 2 compared
to group 1. Parameters estimation was carried out through the EM algorithm
implemented in the R package mirt.

4 Results

To investigate RQ1, we considered the merit ranking obtained by estimating
a BF model under three different strategies: (i) considering the two groups
separately; (ii) considering the two groups together; (iii) using for the second
group the item parameters estimated on the first one. The merit ranking result-
ing from each strategy was compared to the true ranking by using the Pearson
correlation coefficient.



The correlation coefficients are equal to 0.86, 0.96 and 0.96, respectively,
showing no differences in estimating subjects’ abilities θ0 for the two groups
together or using the parameters estimated on the first groups in the second one
in terms of merit ranking. Conversely, the coefficient obtained when the two
models are estimated separately (strategy i) is remarkably lower. This result is
in line with the literature on equalisation methods with non-equivalent groups.

To answer RQ2, we compared some constrained BF models. We first as-
sessed a base (unconstrained) model (Model 0), in which the 30% of items in
each testlet were in common and the other ones were considered as different,
so that different parameters were estimated for the same item administered in
the two time occasions. Then, four models (Model 1-4) nested in the base one
were estimated, where the items within each testlet were constrained to have
equal parameters across the two time occasions. We compared the constrained
models with the base one using BIC, AIC, and the log-likelihood. Results
provide evidence in favor of the base model, recognising an effect on item pa-
rameter estimation when populations present remarkable differences in ability.

5 Conclusions

Preliminary results above presented advice against separately calibrating tests
administered in different occasions and outline the presence of an effect of
populations with different ability distributions on the item parameters. Future
work will focus on extending the simulation study to more general scenarios,
such as different mixtures of populations and tests with only a sub-set of com-
mon items.
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