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ABSTRACT: In latent class (LC) analysis a standard assumption is conditional inde-
pendence, that is the indicators of the LC are independent of the covariates given the
LCs. We compare the likelihood ratio based MIMIC test to residual statistics (BVR
and EPCinterest ) for identifying nonuniform direct effects (DEs) of covariates on the
indicators of the LC model. The simulation study results show that the LR test and
EPCinterest correctly identifies direct effects more often than the BVR.
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1 Introduction

An often violated basic assumption of latent class modeling is the conditional
independence assumption, also known as measurement equivalence. That is
the association between the indicators of the LC model and the covariates are
conditionally independent given the latent classes. Measurement equivalence
can be tested by likelihood ratio based tests that compare the measurement
equivalent model to models where direct effects (uniform or nonuniform) of
covariates are allowed on the indicators of the LC model. An alternative ap-
proach for detecting missfit of the conditional independence model is to use
residual statistics that can show violations of the conditional independence as-
sumption. In this presentation we compare the power of the likelihood ra-
tio based MIMIC model (Masyn, 2017) and that of two residual statistics
(EPCinterest and BVR) to detect the most complex type of measurement in-
variance, nonuniform direct effect. We first introduce the simple LC model,
followed by a short presentation of the 3 approaches to detect missfit, compare
them via a simulation experiment and conclude.

2 Latent class model

Consider the vector of responses Yi = (Yi1, . . . ,YiK), where Yik denotes the re-
sponse of individual i on one of the K categorical indicator variables, with
1 ≤ k ≤ K and 1 ≤ i ≤ N. Latent class (LC) analysis assumes that respondents
belong to one of the T categories (“latent classes”) of an underlying categorical
latent variable X which affects the responses (Goodman, 1974). The measure-
ment model for Yi can then be written as:

p(Yi) =
T

∑
t=1

p(X = t)
K

∏
k=1

p(Yik|X = t). (1)

The number of classes T is selected by comparing the goodness of fit of models
with different values of T using model selection tools such as the AIC and BIC.
Extending the model by a set of covariates Z affecting class membership leads
to a model of a form:
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p(Yi|Z) =
T

∑
t=1

p(X = t|Z)
K

∏
k=1

p(Yik|X = t).(2)

Usually the conditional class membership probabilities P(X |Z) are param-
eterized using a multinomial logistic regression parametrization:

P(X = t|Z = zi) =
exp(αt +βZi)

1+∑
T
t=2 exp(αt +βZi)

. (3)

The model defined in Equation 2 assumes that given the LC variable X
there is no direct relationship between Z and Y - a fairly common assumption
in LV modeling known as measurement invariance. This assumption can be
relaxed:

p(Yi|Zi) =
T

∑
t=1

p(X = t|Zi)
K

∏
k=1

p(Yik|X = t,Zi).(4)

The most complex nonuniform DE can be parameterized as:

P(Y = y|Z = zi) =
exp(αt +βXt +βZi|X)

1+∑
T
t=2 exp(αt +βXt +βZi|X)

. (5)

The simpler uniform DE would mean dropping the class specific formulation
of the effect of Z.

3 Identifying direct effects in LC models

3.1 Residual statistics

The BVR evaluates the residual association between each possible pair of ob-
served variables ( j, j′) using a χ2 test with 1 degree of freedom. The statistics
can be formally defined as:

BV R j j′ = 1/P∑
j
∑
j′

(n j j′ −En j j′)
2

n j j′
(6)

where the expected association En j j′ for the covariate- indicator associa-
tion is defined based on equation 2 in such a way that given the LC variable
X there is no association between Z and Y. A downside of BVR is that the
assumption of χ2 distribution with 1 df does not hold (Oberski et al., 2017).

.



Based on equations 5 we can see that the test of measurement invariance
often takes the form of restricting a set of parameters to 0. In our case this
refers to βZ|X . Let us consider a restriction on a vector of such logit coeffi-
cients as ψ = 0. In a general form the EPCinterest can be formulated as:

EPCinterest = P(
∂θ

∂ψ′ )(ψ−ψ
′) (7)

where P is a matrix selecting the parameters of interest and θ is the vector
of free model parameters. EPCinterest can be seen as a linear approximation
of the relationship between the free and fixed parameters of interest (Oberski
et al., 2017).

3.2 Likelihood ratio based stepwise multiple indicator multiple cause
(MIMIC) modeling

The likelihood ratio based MIMIC approach (Masyn, 2017) is a multistage
approach where nested models are compared with the goal to find the least re-
strictive well fitting model. The approach starts by comparing the latent class
model with covariate (see Eq 2) to the model including all possible nonuni-
form DEs (see Eq 5). In case the LR test of the 2 nested models shows better
fit of the all-DE model, the assumption of no DE is rejected, and a stepwise
approach follows to identify the source of misfit. In the 2nd step an item by
item testing of non uniform DE is performed, followed by an item by item
testing of uniform DE for items for which a non uniform DE was confirmed in
step 2. The approach has in total 7 possible steps, but we focus only on first 2
steps that focus on identifying nonuniform DE.

4 Simulation study

Table 1. Percentage of correctly(T) and wrongly (F) identified DE with BVR, EPC
and LR test separately for the low and high DE condition per latent class separation
condition averaged over all sample sizes

Class High DE Low DE
sep BVRT BVRF EPCT EPCF LRT LRF BVRT BVRF EPCT EPCF LRT LRF
high ,18 ,00 ,98 ,16 ,97 ,18 ,00 ,00 ,41 ,10 ,63 ,16
med ,22 ,00 ,86 ,20 ,83 ,29 ,00 ,00 ,44 ,12 ,60 ,29
low ,03 ,00 ,41 ,15 ,52 ,34 ,00 ,00 ,37 ,15 ,42 ,27



To test the ability of the 3 approaches to identify the presence of non uni-
form DE we run a simulation study with a LC model with 3 equal sized classes
(class 1 low on all indicators, class3 high on all, class 2 low on first 3, high on
last 3 indicators) measured by 6 indicators and regressed on a covariate. A
full factorial design crossing sample size (250,500,1000,200), class separation
(Y |X : .70,.80,.90), strength of DE (low, βZ|X = .25; high, .75) was used. DE
was allowed on items 1 and 6.

When comparing the LR test for all nonuniform DE vs no DE model in all
simulated conditions the more complex model was chosen, as such results are
not detailed. The results in Table 1 show that the BVR is not a good statistic to
identify a nonuniform DE, while the performance of EPCinterestand LR test is
better, their ability to identify a DE strongly depends not only on the strength
of the DE, but also on the quality of the measurement model. With weaker
measurement models all statistics fail to have a nominal rate close to the 95%.

5 Discussion

In a simulation experiment we compared EPCinterest , BVR and LR tests to
identify a nonuniform DE. The results show that the EPCinterestand LR test are
more reliable, yet only in a few conditions meat the nominal 95% true-positive
rate while maintaining a high false positive rate (between .16% to .29%). The
BVR test was the most unreliable. We can conclude that nonuniform DE in
most conditions is under identified by all estimators.
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