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ABSTRACT: This paper provides the definition of trimmed factorial k-means (TFKM)
algorithm. TFKM is a robust version of factorial k-means, where a robust covariance
matrix input is used, and outliers in the identified reduced space are iteratively re-
moved via a trimming procedure. The selected latent rank, number of clusters and
outlier proportion are those which maximize Hartigan’s statistic.
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1 Introduction

Clustering high-dimensional data with many objects is a challenging task for
several reasons. First, a high dimension and a large sample size make agglom-
erative hierarchical methods like Ward’s one (Ward, 1963) computationally
intractable. Second, hierarchical partitioning methods like k-means algorithm
(MacQueen, 1967) may become very unstable in high dimensions, due to nu-
merical instability and multicollinearity. Third, any non-robust methodology
applied to a large dataset is likely to be affected by outliers, so that there is the
need to develop and apply robust versions of traditional methods to prevent
the identification of uninformative partitions, like trimmed k-means (TKM)
(Cuesta-Albertos et al. , 1997).

In order to approach dimension reduction, Vichi & Kiers, 2001 proposed
factorial k-means (FKM), a method to identify the latent space most able to
maximize the distinctiveness of projected objects. The strong consistency of
FKM was proved in Terada, 2015. In this paper, we present a robust version of
factorial k-means, named trimmed factorial k-means (TFKM), where outliers
are iteratively removed in the reduced space, thus simultaneously identifying
radial outliers and designing better shaped clusters. This is obtained by min-
imising the trimmed least squares criterion in the reduced space. A preliminary
version of TFKM was first described in Farnè & Vouldis, 2021. Here, we em-
ploy MCD (Minimum Covariance Determinant, see Rousseeuw & Driessen,
1999) or ROBPCA (Hubert et al. , 2005) to robustly estimate the input covari-
ance matrix, and we then iteratively apply the trimming procedure to estimated
factor scores.
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2 Trimmed factorial k-means algorithm

Let us consider a n× p data matrix X. The trimmed factorial k-means of Vichi
& Kiers, 2001 assumes that

XAA′ = UYA′+E, (1)

where A is a p× r semi-orthogonal coefficient matrix, such that A′A = Ir; U
is a n× c membership matrix such that Ui j = 1, i = 1, . . . ,n, j = 1, . . . ,c, if
observation i belongs to cluster j; Y is a c× r centroid matrix; r is the latent
rank and c is the number of clusters. Model (1) assumes that the variable
space is approximately isomorphic to a latent linear space, spanned by the
same variables, on which the projected data vectors are maximally apart. It is
recovered by minimizing FKM(A,U,Y) = ∥XAA′−UYA′∥2 = ∥XA−UY∥2,
which is the deviance within clusters in the reduced space, where by least
squares we can obtain Y = (U′U)−1U′XA.

Denoting the n× r factor score matrix by F = XA, in this paper we as-
sume that (100α)% of the n true factor score vectors, with α ∈ [0,0.5], are
arbitrarily distant from the bulk of the rest of factor score vectors. Therefore,
in this situation it is appropriate to minimize FKM(A,U,Y) under the con-
straint ∑

n
i=1 ∑

c
j=1 Ui j = [(1−α)n], with ∑

c
j=1 Ui j = {0,1}, for each i= 1, . . . ,n.

This problem can be numerically solved by adapting the original Alternated
Least Squares (ALS) algorithm of Vichi & Kiers, 2001 to the framework of
Rousseeuw & Van Driessen, 2000 (see also Farnè & Vouldis, 2021). In par-
ticular, once initialized, A, U, and Y are first recovered by the original ALS
algorithm, which is the H-step, and a trimming procedure is subsequently ap-
plied by excluding the [αn] observations most apart from the respective cluster
centroids in the reduced space, which is the C-step.

The algorithm input is the Minimum Covariance Determinant (MCD) co-
variance matrix estimate, if n ≥ 2p, or the ROBPCA-based reduced covariance
matrix with fixed rank p/10, otherwise. We call the algorithm input C. We
then fix the latent rank r, the number of clusters c, and the outlier proportion
α, and we apply the following procedure.

• Step 0. We derive the best r-ranked approximation of C as Cr = VrDrV′
r

by extracting the top r principal components of C. We generate a permu-
tation square matrix of size p, P, we orthogonalize it by Gram-Schmidt
algorithm, getting P̃, and we obtain the initial coefficient matrix as A0 =
P̃Vr. Then, we calculate F0 = XA0, the mean factor score F0, and the
distances di,0 = Fi,0 −F0, for i = 1, . . . ,n. We derive for each i a T -score



as follows: Ti,0 = nd′
i,0C−1

F,0di,0, where CF,0 is the r× r covariance matrix
of F0. Then, we calculate the 2c quantiles of Ti,0, and we allocate each
object to the closest quantile among the first, the third, . . . , the (c−1)-th.
We thus obtain the initial membership matrix U0, and the initial centroid
matrix Y0 = (U′

0U0)
−1U′

0XA0. We set k = 1, and we proceed as follows.
• Step 1. We minimize FKM(Ak−1,Uk,Yk−1) with respect to Uk given the

values of Ak−1 and Yk−1. For each row i of Uk, we first impose for each
ν = 1, . . . ,c that Uiν,k = 1, and we then set Ui j,k = 1 if and only if

arg min
ν=1,...,c

FKM(Ak−1,Uiν,k,Yk−1) = j.

• Step 2. We calculate Fk−1 = XAk−1, and the distances di,k = Fi,k−1 −
Yli,k−1, where li is s.t. Uili,k = 1. Then, we derive for each object a T -
score as follows: Ti,k = nd′

i,kC−1
F,k−1di,k, i = 1, . . . ,n, where CF,k−1 is the

r × r covariance matrix of Fk−1. At this stage, we derive the (1−α)-
quantile of Tk, T1−α,k, and we set Uili,k = 0 if Ti,k > T1−α,k.

• Step 3. FKM(Ak,Uk,Yk) is minimized keeping fixed Uk, to jointly up-
date Ak and Yk. Among all the linear combinations of X, the ones closer
to the centroids (in the transformed space) are derived by taking the
first r eigenvectors of X′(Uk(U′

kUk)
−1U′

k − In)X (see Ten Berge, 1993).
Based on the optimal Ak, we can then update Yk using the expression
(U′

kUk)
−1U′

kXAk.
• Step 4 FKM(Ak,Uk,Yk) is computed for the current values of Uk, Ak,

and Yk. If FKM(Ak,Uk,Yk) < FKM(Ak−1,Uk−1,Yk−1), we increase k
by 1 and we go again with Steps 1, 2 and 3. Otherwise, the process has
converged, we set k∗ = k−1 and we retain as solutions Uk∗ , Ak∗ , and Yk∗ .

The reported algorithm is repeated N = 1000 times, and the final solution is
chosen as the one with minimum objective FKM(Ak∗ ,Uk∗ ,Yk∗) across the N
trials.

A grid of possible values for the latent rank r, the number of clusters c
and the outlier proportion α is specified. Given that Y = (U′U)−1U′XA, and
rk((U′U)−1U′XA) = min(c−1,r), we cannot explore any combination violat-
ing the condition r ≤ c−1, to avoid singularity in the reduced space. We denote
the solutions for each triple (r,c,α) as U(r,c,α), A(r,c,α), Y(r,c,α), obtained
under the constraint ∑

n
i=1 ∑

c
j=1 Ui j = [(1−α)n], with ∑

c
j=1 Ui j = {0,1}, for

each i = 1, . . . ,n. The optimal values of r, c, and α are then identified by
employing Hartigan’s statistic (1975), which can be obtained as follows.

First, within clusters deviance is computed for each triple (r,c,α) as
W (r,c,α) = ∑

n
i=1 ∥di∥, where di = Fi(r,c,α)−Yli(r,c,α), li is such that



Uili(r,c,α) = 1, F(r,c,α) = XA(r,c,α),
Y(r,c,α) = (U(r,c,α)′U(r,c,α))−1U(r,c,α)′XA(r,c,α). Second, Hartigan’s
statistic H(r,c,α) is obtained as

H(r,c,α) = (p− c−1)
(

W (r,c,α)
W (r,c−1,α)

−1
)
.

Finally, we select the triple (r∗,c∗,α∗) returning the maximum H(r,c,α) across
selected grid values.
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