AN R PACKAGE FOR MULTILEVEL LATENT CLASS ANALYSIS WITH COVARIATES

Johan Lyrvall¹, Roberto Di Mari¹, Zsuzsa Bakk², Jennifer Oser³ and Jouni Kuha⁴

¹ Department of Business and Economics, University of Catania, (e-mail: johan.lyrvall@phd.unict.it)
² Department of Methodology and Statistics, Leiden University
³ Department of Politics and Government, Ben-Gurion University
⁴ Department of Methodology, London School of Economics

ABSTRACT: In this article we introduce multilevLCA - an R package for efficient estimation of single-level and multilevel latent class models with covariates.

KEYWORDS: Multilevel latent class analysis, R package, two-step estimation.

1 Introduction

Latent class (LC) analysis is to create a discrete classification of units based on a set of observed variables, which are taken as observed indicators of an unknown nominal variable with some number of latent classes. Multilevel LCA has been developed to account for hierarchical data structures, i.e., when lower-level units are nested within higher-level ones (e.g., survey respondents nested within countries, pupils within schools). The multilevel LC model can be extended to allow for external covariates as predictors of class membership.

The general recommendation for fitting single-level and multilevel LC models with covariates is to use stepwise estimators. In particular, the two-step (Di Mari et al., 2023) and two-stage approaches (Bakk et al., 2022) for multilevel LCA, and the two-step approach for single-level LCA (Bakk & Kuha, 2018) have some attractive properties with respect to model construction, and estimation efficiency and algorithmic stability.

In the current paper we introduce the R package multilevLCA - the first to implement two-step estimation, in a functional and user-friendly way, for single-level and multilevel latent class analysis with covariates.
2 Modelling framework

Let \(Y_{ijh} \) denote the observed response of low-level unit (individual) \(i \) in high-level unit (group) \(j = 1, \ldots, J \) on the categorical indicator variable \(h = 1, \ldots, H \). The full response vector for the same unit is denoted \(Y_{ij} = (Y_{ij1}, \ldots, Y_{ijH}) \). For simplicity of exposition, we focus below on dichotomous indicators, with a conditional Bernoulli distribution, \(P(Y_{ih} = y_{ih} | X_i = t) = \phi_{y_{ih}h|t}(1 - \phi_{h|t})^{1 - y_{ih}} \).

Let \(W_j \) be a group-level latent class variable, with possible value \(m = 1, \ldots, M \), and probabilities \(P(W_j = m) = \omega_m > 0 \). Given a realization of \(W_j \), let \(X_{ij} \) be an individual-level latent class variable, with possible values \(t = 1, \ldots, T \), and conditional probabilities \(P(X_{it} = t | W_j = m) = \pi_{t|m} > 0 \).

We assume that individual response probabilities are conditionally independent from each other given low-level class membership (the classical local independence assumption). We further assume that individual response probabilities depend on high-level class membership only through \(X_{ij} \) (a common assumption in multilevel LCA; Vermunt, 2003; Lukociene et al., 2010). Then, an unconditional multilevel LC model for \(Y_{ij} \) can be specified as follows:

\[
P(Y_{ij}) = \sum_{m=1}^{M} P(W_j = m) \sum_{t=1}^{T} P(X_{ij} = t | W_j = m) \prod_{h=1}^{H} P(Y_{ijh} | X_{ij} = t). \tag{1}
\]

High-level and low-level covariates can be included in order to predict class membership. Let \(Z_{ij} = (1, Z_{1ij}', Z_{2ij}')' \) be a vector of covariates, with the sub-vector \(Z_{1ij}' \) being defined at the high level, and \(Z_{2ij}' \) being defined at the low level. Let \(Z_{ij}' = (1, Z_{ij}')' \). For high-level and low-level latent class membership, respectively, we consider the multinomial logistic models

\[
P(W_j = m | Z_{ij}') = \frac{\exp(\alpha_m Z_{ij}')}{1 + \sum_{l=2}^{M} \exp(\alpha_l Z_{ij}')}, \tag{2}
\]

\[
P(X_{it} = t | W_j = m, Z_{ij}) = \frac{\exp(\gamma_{tm} Z_{ij})}{1 + \sum_{s=2}^{T} \exp(\gamma_{sm} Z_{ij})}, \tag{3}
\]

In Equation (2), \(\alpha_m \) are regression coefficients for \(m = 2, \ldots, M \), and \(m = 1, \ldots, M \). In Equation (3), \(\gamma_{tm} \) is a vector of regression coefficients for each \(t = 2, \ldots, T \). When only the intercept is included in Equation (2), or (3), the corresponding vector of regression coefficients is equal to the log-odds of the class proportions (i.e., \(\log(\omega_m/\omega_1) \), or \(\log(\pi_{t|m}/\pi_{1|m}) \)).
In addition, we assume that the observed indicators \(Y_{ijh} \) are conditionally independent from the covariates given low-level class membership. Thus, the multilevel LC model for \(P(Y_{ij}|Z_{ij}) \) can be written as:

\[
P(Y_{ij}|Z_{ij}) = \sum_{m=1}^{M} P(W_j = m|Z_{ij}^*) \sum_{t=1}^{T} P(X_{ij} = t|W_j = m, Z_{ij}) \prod_{h=1}^{H} P(Y_{ijh}|X_{ij} = t).
\]

(4)

The class profiles are defined by the measurement parameters \(\phi_{ht}, \pi_{itm}, \) and \(\omega_m \). The other parameters of interest are the structural parameters \(\alpha_m \) and \(\gamma_{tm} \). It is straightforward to reduce the multilevel LC structural model in Equation (4) to the multilevel measurement model, the single-level structural model, or the single-level measurement model.

3 Estimating the multilevel LC model in multilevLCA

The default estimator of Equation (4), in the R package multilevLCA, is the two-step approach (Di Mari et al., 2023). We add that future versions of the package will relax the assumptions of Equation (4) to allow for local dependencies. Other options are the two-stage (Bakk et al., 2022) and the simultaneous approaches. A basic function call requires the following arguments:

- data The input data (matrix or data frame)
- Y The names of the item columns
- iT The number of low-level latent classes
- id_high The name of the high-level id column
- iM The number of high-level latent classes
- Z The names of the low-level covariates columns
- Zh The names of the high-level covariates columns

Estimation is performed via the function multiLCA,

\[
\text{out} = \text{multiLCA}(\text{data}, Y, \text{iT}, \text{id_high}, \text{iM}, Z, Zh)
\]

The list out contains a lot of information about class profiles, structural parameters, and estimation details. A summary of this information can be printed by executing out in the prompt. To create a plot of the response probabilities, the user types plot(out) in the prompt.
In practice, the number of low-level and high-level classes is unknown to the researchers. Selecting these values is a distinct, yet fundamental task. The multilevLCA package includes two state-of-the-art model selection strategies, namely sequential model selection (Lukociene et al. 2010) and simultaneous model selection. Both approaches implement the BIC selection criterion on low and high level, reporting also the AIC and ICL BIC.

To implement the former, iT and (or) iM is replaced by a range of values. The latter is implemented in the same way, but with the extra argument sequential set to FALSE. For example, to perform simultaneous model selection over 1-4 low-level classes, and 3-4 high-level classes, we execute the following call:

```r
out = multiLCA(data,Y,iT=1:4,id_high,iM=3:4, sequential=FALSE)
```

The list out contains the model estimation results as if the selected specification had been estimated directly. Note that specifying Z and Zh is redundant; in multilevLCA, model selection is always performed without covariates.

The tools for model selection, and visualization are available for any LC model, i.e., the multilevel structural model, multilevel measurement model, single-level structural model, and single-level measurement model.

References

LUKOCIENE, O., VARRIALE, R., & VERMUNT, J. K. 2010. The simultaneous decision (s) about the number of lower-and higher-level classes in multilevel latent class analysis. *Sociological Methodology*, 40(1), 247–283.