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ABSTRACT: In this article we introduce multilevLCA - an R package for efficient
estimation of single-level and multilevel latent class models with covariates.
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1 Introduction

Latent class (LC) analysis is to create a discrete classification of units based
on a set of observed variables, which are taken as observed indicators of an
unknown nominal variable with some number of latent classes. Multilevel
LCA has been developed to account for hierarchical data structures, i.e., when
lower-level units are nested within higher-level ones (e.g., survey respondents
nested within countries, pupils within schools). The multilevel LC model can
be extended to allow for external covariates as predictors of class membership.

The general recommendation for fitting single-level and multilevel LC
models with covariates is to use stepwise estimators. In particular, the two-step
(Di Mari et al., 2023) and two-stage approaches (Bakk et al., 2022) for mul-
tilevel LCA, and the two-step approach for single-level LCA (Bakk & Kuha,
2018) have some attractive properties with respect to model construction, and
estimation efficiency and algorithmic stability.

In the current paper we introduce the R package multilevLCA - the first
to implement two-step estimation, in a functional and user-friendly way, for
single-level and multilevel latent class analysis with covariates.



2 Modelling framework

Let Yi jh denote the observed response of low-level unit (individual) i in high-
level unit (group) j = 1, . . . ,J on the categorical indicator variable h= 1, . . . ,H.
The full response vector for the same unit is denoted Yi j = (Yi j1, . . . ,Yi jH). For
simplicity of exposition, we focus below on dichotomous indicators, with a
conditional Bernoulli distribution, P(Yih = yih|Xi = t) = φ

yih
h|t(1−φh|t)

1−yih .
Let Wj be a group-level latent class variable, with possible value m =

1, . . . ,M, and probabilities P(Wj = m) = ωm > 0. Given a realization of Wj, let
Xi j be a individual-level latent class variable, with possible values t = 1, . . . ,T ,
and conditional probabilities P(Xi = t|Wj = m) = πt|m > 0.

We assume that individual response probabilities are conditionally inde-
pendent from each other given low-level class membership (the classical local
independence assumption). We further assume that individual response prob-
abilities depend on high-level class membership only through Xi j (a common
assumption in multilevel LCA; Vermunt, 2003; Lukociene et al., 2010). Then,
an unconditional multilevel LC model for Yi j can be specified as follows:

P(Yi j) =
M

∑
m=1

P(Wj = m)
T

∑
t=1

P(Xi j = t|Wj = m)
H

∏
h=1

P(Yi jh|Xi j = t). (1)

High-level and low-level covariates can be included in order to predict
class membership. Let Zi j = (1,Z′

1 j,Z′
2i j)

′ be a vector K covariates, with the
sub-vector Z′

1 j being defined at the high level, and Z′
2i j being defined at the

low level. Let Z∗
1 j = (1,Z′

1 j)
′. For high-level and low-level latent class mem-

bership, respectively, we consider the multinomial logistic models

P(Wj = m|Z∗
1 j) =

exp(α′
mZ∗

1 j)

1+∑
M
l=2 exp(α′

lZ
∗
1 j)

, (2)

P(Xit = t|Wj = m,Zi j) =
exp(γ′tmZi j)

1+∑
T
s=2 exp(γ′smZi j)

, (3)

In Equation (2), αm are regression coefficients for m = 2, . . . ,M, and m =
1, . . . ,M. In Equation (3), γtm is a vector of regression coefficients for each
t = 2, . . . ,T . When only the intercept is included in Equation (2), or (3), the
corresponding vector of regression coefficients is equal to the log-odds of the
class proportions (i.e., log(ωm/ω1), or log(πt|m/π1|m)).



In addition, we assume that the observed indicators Yi jh are conditionally
independent from the covariates given low-level class membership. Thus, the
multilevel LC model for P(Yi j|Zi j) can be written as:

P(Yi j|Zi j) =

M

∑
m=1

P(Wj = m|Z∗
1 j)

T

∑
t=1

P(Xi j = t|Wj = m,Zi j)
H

∏
h=1

P(Yi jh|Xi j = t).
(4)

The class profiles are defined by the measurement parameters φh|t , πt|m,
and ωm. The other parameters of interest are the structural parameters αm,
and γtm. It is straightforward to reduce the multilevel LC structural model in
Equation (4) to the multilevel measurement model, the single-level structural
model, or the single-level measurement model.

3 Estimating the multilevel LC model in multilevLCA

The default estimator of Equation (4), in the R package multilevLCA, is the
two-step approach (Di Mari et al., 2023). We add that future versions of the
package will relax the assumptions of Equation (4) to allow for local dependen-
cies. Other options are the two-stage (Bakk et al., 2022) and the simultaneous
approaches. A basic function call requires the following arguments:

• data The input data (matrix or data frame)
• Y The names of the item columns
• iT The number of low-level latent classes
• id_high The name of the high-level id column
• iM The number of high-level latent classes
• Z The names of the low-level covariates columns
• Zh The names of the high-level covariates columns

Estimation is performed via the function multiLCA,

out = multiLCA(data,Y,iT,id_high,iM,Z,Zh)

The list out contains a lot of information about class profiles, structural
parameters, and estimation details. A summary of this information can be
printed by executing out in the prompt. To create a plot of the response prob-
abilities, the user types plot(out) in the prompt.



In practice, the number of low-level and high-level classes is unknown to
the researchers. Selecting these values is a distinct, yet fundamental task. The
multilevLCA package includes two state-of-the art model selection strate-
gies, namely sequential model selection (Lukociene et al. 2010) and simultae-
nous model selection. Both approaches implement the BIC selection criterion
on low and high level, reporting also the AIC and ICL BIC.

To implement the former, iT and (or) iM is replaced by a range of val-
ues. The latter is implemented in the same way, but with the extra argument
sequential set to FALSE. For example, to perform simultaneous model
selection over 1-4 low-level classes, and 3-4 high-level classes, we execute the
following call:

out = multiLCA(data,Y,iT=1:4,id_high,iM=3:4,
sequential=FALSE)

The list out contains the model estimation results as if the selected specifi-
cation had been estimated directly. Note that specifying Z and Zh is redundant;
in multilevLCA, model selection is always performed without covariates.

The tools for model selection, and visualization are available for any LC
model, i.e., the multilevel structural model, multilevel measurement model,
single-level structural model, and single-level measurement model.
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