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ABSTRACT: Rectangular latent Markov (LM) models have been recently introduced
to account for different numbers of latent states over time. This contribution proposes
a three-step estimation procedure for such models, which proved useful in the LM
modeling framework for flexibility. Specifically, a bias-adjusted maximum likelihood
(ML) estimator is introduced for the third step. A simulation study provided prelimi-
nary encouraging results regarding the efficacy and effectiveness of the method.
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1 Introduction

Latent Markov (LM) models represent a primary reference to study change
over time in the framework of non-parametric latent variable models (Bar-
tolucci et al., 2014). Given a set of response variables repeatedly measured
at different time points, LM models allow analyzing individuals’ transitions
across latent states over time, assuming a first-order Markov chain for the la-
tent process. Three types of parameters characterize LM models: initial state
probabilities, namely state proportion at the first time point; transition proba-
bilities, describing the transition from one state to another at each subsequent
time point; class-conditional parameters accounting for the relation between
latent states and observed indicators. Moreover, the effect of individual covari-
ates on initial and transition probabilities can be considered.

One-step and multi-step approaches have been proposed for model pa-
rameter estimation. Due to their flexibility and high feasibility, step-wise ap-



proaches are usually preferred in practice. Among them, a bias-adjusted three-
step approach exploiting a maximum likelihood-based (ML) correction was
proposed (Di Mari et al., 2016).

Rectangular LM models have been recently introduced to address the is-
sue of possible different numbers of latent states for the considered time points
(Anderson et al., 2019). Indeed, over time the nature and number of latent
classes tend to vary; therefore, a unique overall definition of the latent classes,
as typical in classical LM models, might result in either too restrictive or re-
dundant. Currently, only a one-step estimation procedure for this model has
been proposed (Anderson et al., 2019). In this vein, the present contribution
aims to further generalize the bias-adjusted three-step approach based on ML
correction to the case of LM models with rectangular transition matrices.

The following section outlines the proposed three-step approach. Section 3
presents the simulation study carried out to obtain a preliminary evaluation of
the developed estimator. Section 4 reports some conclusions.

2 Three-step rectangular LM modeling

Let Y(t)
s = (Y (t)

s1 , . . . ,Y (t)
sKt

)′ be the vector of responses for individual s = 1, . . . ,N
on the Kt indicators measured at time point t = 1, . . . ,T , with a realization
y(t)s . It is worth noting that the set and the number of indicators Kt varies over
time. Denote with X (t)

s the categorical latent variable at time t taking value
i = 1, . . . , It , producing rectangular transition matrices wherever It−1 ̸= It .

In Step 1, the measurement part of the model is estimated for each time
point exploiting a latent class model. This step connects the latent states
i = 1, . . . , It to the response variables Y(t)

s , providing for each individual s and
time t, the posterior class probability P(X (t)

s = i|Y(t)
s = y(t)s ). In Step 2, state

membership W (t)
s is obtained according to the modal assignment rule, namely

allocating individuals in the class for which they present the largest poste-
rior probability. Accordingly, the classification error probabilities included in
the time-specific D(t) matrix are defined as the conditional probability of the
estimated class value conditional on the true one P(W (t)

s = g|X (t)
s = i), with

g, i = 1, . . . , It . In Step 3, a rectangular LM model is estimated with the vector
of class assignments Ws = (W (1)

s , . . . ,W (T )
s ) as single indicators and known er-

ror probabilities included in the D(t) matrices. Keeping out of consideration the
effect of covariates, the third-step log-likelihood is ℓ(η) = ∑

N
s=1 log{P(Ws)},

where η is the vector of free model parameters. The probability P(Ws) can be



expressed for rectangular transition matrices as

P
(
Ws

)
=

I1

∑
i(1)=1

I2

∑
i(2)=1

· · ·
IT

∑
i(T )=1

P
(
X (1)

s = i(1)
) T

∏
t=2

P
(
X (t)

s = i(t)|X (t−1)
s = i(t−1))

T

∏
t=1

P
(
W (t)

s = g(t)|X (t)
s = i(t)

)
,

where the state-dependent distributions (given by classification errors) are con-
sidered fixed parameters, and thus they are not estimated.

A generalization of the Baum–Welch algorithm (Rabiner, 1989) for rectan-
gular LM, which exploits forward and backward probabilities during estima-
tion, was implemented in the I statistical software. The proposed estimator
allows for both time-varying and time-invariant measurement models.

3 Simulation study for the developed bias-adjusted estimator

A simulation study was carried out to evaluate the performance of the bias-
adjusted maximum likelihood estimator. Different scenarios were considered,
mainly concerning class separation and sample size. In particular, three simple
latent class models (one per time point) with 3-3-2 latent classes were consid-
ered for the measurement part of the model. Class separation was modeled
through response probabilities to ten dichotomously-scored items, setting a
probability of 0.8 and 0.9 for the most likely responses in the case of moderate
and large class separation, respectively. Four sample sizes were considered:
200, 500, 2000, and 10000 observations. Finally, equal size was imposed for
initial probabilities and persistent Markov chains for transition probabilities.
For each condition, 500 replications were carried out. The bias in the model
parameters estimates (initial and transition probabilities) was used to compare
the estimator’s performance under different conditions.

The results support the overall good performance of the proposed third-
step bias-adjusted estimator. The data log-likelihood increases monotonically
according to the number of iterations and the algorithm reaches convergence
within 20 iterations. The variability of the estimated bias distribution for both
initial and transition probabilities becomes smaller as class separation and sam-
ple size increase. Figure 1 shows an example of the estimated bias for the

transition matrix from Time 2 to Time 3, with γti j = log P(X (t)
s =i|X (t−1)

s = j)

P(X (t)
s = j|X (t−1)

s = j)
. Note

that more accuracy for initial probabilities estimates emerged, which reported
an average bias close to 0 in all the considered conditions. Conversely, as the
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Figure 1. Mean and standard error of transition probabilities bias (T2 to T3).

figure shows, a small sample size (n = 200) strictly affects transition probabil-
ities estimation due to the presence of very small probabilities in the transition
matrix cells that can easily end up in an estimate close to the boundary. Of
course, this rarely happens with large samples.

4 Conclusion
A bias-adjusted three-step rectangular LM modeling approach was proposed.
In particular, a new estimator for an ML-based correction was developed for
the third step. The proposed estimator proved to perform well asymptotically,
with a larger estimation bias for small samples and lower class separation. Cur-
rent developments aim at also considering the covariates’ effect on initial and
transition probabilities. Empirical applications could provide further insights
into the practical advantages of the proposed method.
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