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ABSTRACT: Microbiota plays a crucial role in human health. Recently, NGS tech-
nologies have enabled the exploration of the microbiome without isolation and cultur-
ing. However, analyzing and translating microbiome data into meaningful biological
insights is challenging due to the data’s compositional nature, high dimensionality,
sparseness, and over-dispersion. The gut microbiome can vary from individual to in-
dividual, and microbiome communities can be grouped to identify community types
linked to environmental or health conditions. Different data features, such as individ-
ual profiles, community-based descriptors, or genera interactions within a community,
provide different perspectives on microbiome complexity. Combining these perspec-
tives could lead to a more comprehensive understanding of microbiome data.
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1 Introduction

Microbiota is largely recognized as being a central player in the human health
and in that of all organisms and ecosystems, and subsequently has been the
subject of intense study. Recently, Next Generation Sequencing (NGS) tech-
nologies have enabled the exploration of microbiome without the need for
isolation and culturing. The data we are going to study have been obtained
through deep sequencing of 16SrRNA genes and grouping bacteria at a certain
level of 16SrRNA gene similarity. The analysis and the translation of micro-
biome data into meaningful biological insights remain still very challenging,
also due to particular data characteristics. Microbiome data, in fact, are taxa
counts that are compositional in nature (Gloor et al., 2017), high-dimensional,
sparse and over-dispersed. In humans, gut microbiome can vary from individ-
ual to individual and individual microbiome communities can be grouped to
identify community types whose variability can be differently linked to envi-
ronmental or health conditions.



According to the literature on microbiome data (Xia et al., 2018), different
data features can provide different perspectives on microbiome complexity.

The focus has typically been placed either on individual profiles or on
community-based descriptors or on genera interactions within a community.
We argue that combining these different perspectives could provide a more
comprehensive understanding.

2 Microbiome data views

2.1 Individual profiles

The basic sampling units, over which conclusions are generalized, are biolog-
ical samples. It is of interest to highlight similarities and differences across
these units. The fundamental features with which to describe samples are the
counts of bacterial species. For interpretation, it is common to imagine proto-
typical units which can be used as a point of reference for observed samples.
In microbiome analysis, these are called communities: different communities
have different bacterial signatures.

It is worth noticing that this kind of data structure closely resembles the
term-document matrix, typically used in the analysis of textual data, and that
microbiome data share many of its pros and cons (Sankaran & Holmes, 2019).

2.2 Diversity measures

Characteristic of biological communities is the biodiversity, and it can be de-
scribed either focusing on within-individual richness of taxa or on inter- indi-
vidual variability. α-diversity is the diversity within a single sample and can
be measured via Shannon-Wiener diversity index H ′ or via Simpson diversity
index D:
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where pi is the proportion of individuals (or relative abundance) of species i in
the community and p is the total number of species present.

β-diversity evaluates differences between two or more units or local as-
semblages, thus allowing to describe how many taxa are shared between com-
munities or individuals. Examples are the Bray-Curtis dissimilarity:
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where Xi j, Xik are the number of individuals in species i in each sample ( j,k)
and p is the total number of species in samples, and the UniFrac distance. The
unweighted (dU ) and weighted (dW ) UniFrac distances exploit the phyloge-
netic tree information and can be found for two communities A and B as
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where pA
t and pB

t are the taxa proportions descending from the branch t for
community A and B, respectively, T is the rooted phylogenetic tree’s branches
and bt is the length of the branch t.

2.3 Network structures

The interactions among the constituent members of a microbial community
play a major role in determining the overall behavior of the community and
the abundance levels of its members (Xia et al., 2018). These interactions can
be modeled using a network whose nodes represent microbial taxa and edges
represent pairwise interactions. It is often unreasonable to expect that a single
network is able to account for all the interactions in a community and network
clustering can help in detecting microbiome features connected, for instance,
with different health and environment condition.

3 Microbiome multi-view clustering

Clustering individual profiles (view 1) can be performed via partitioning and
hierarchical methods (such as, e.g., spherical k-means, Partitioning Around
Medoids, Ward’s method) or via model-based methods such as mixtures of Von
Mises-Fisher distributions, Dirichlet Multinomial Mixtures, Latent Dirichlet
Allocation (see, for a review, Sankaran & Holmes, 2019).

In view of the analogy between microbiome and textual data, we propose
to use here the method proposed in Anderlucci et al., 2019, which models
the clustering structure through a cosine distance-based mixture. Specifically,
given the cosine dissimilarity d(x,ξ) of a generic sample/document x from a
centroid, say ξ, a distance-based density can be constructed as:

f (x;ξ,λ) = ψ(λ)e−λd(x,ξ)

where λ is a positive precision parameter and ψ(λ) is a normalization constant.
In order to perform clustering, we consider a mixture of K cosine distance-



based density functions:

f (x;ξ,λ) =
K

∑
k=1

πkψ(λ)e−λd(x,ξk)

with positive mixture weights πk, summing to unity and component varying
centroid vectors ξk.

When the focus is on community diversity (view 2), the different diversity
measures can be combined in a Gower’s-coefficient-like fashion in order to
guide the clustering of the individuals.

Finally, when the aim is to capture the interaction structure between taxa
(view 3) network-based clustering via mixtures of Multivariate Poisson Log-
Normal distributions can be applied (Tavakoli & Yooseph, 2019).

The clustering results of the three data views will be combined via con-
sensus clustering (Hornik, 2005) or via the Bayesian two-way latent structure
model proposed in Swanson et al., 2019. The proposed multi-view clustering
method will be applied to real data on gut microbiome described in McDonald
et al., 2018.
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