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ABSTRACT: In this manuscript, leveraging the Tucker3 model, we investigate the
gender gap in mortality considering the ratio of male to female mortality rates, specific
for age, cause of death, and cohort. The model is applied to a tensor containing gender
gap data by causes, age classes, and non-extinct cohorts.
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1 Introduction

Understanding mortality is of great importance for both private and public sec-
tors to design appropriate pension or insurance plans. To this purpose, several
interesting applications of multi-way models to mortality data are available in
the literature (see, e.g., Cardillo et al., 2023). Generally speaking, in these
studies, data usually refer to mortality rates across demographic features such
as causes of death, ages, countries, and years. This work represents a further
step in mortality analysis by focusing on the gender gap (Zarulli et al., 2021) in
causes of death and its evolution by cohort. Limiting our attention to the three-
way case, the Tucker3 model is applied to a tensor containing gender gap data
in mortality distinguished by causes of death, age classes, and cohorts.

2 Three-way data and models

A three-way array or tensor X of order (I × J ×K) can be seen as a box con-
taining scores on a set of I observation units with respect to J variables in
K different occasions. Observation units, variables and occasions are usually
referred to as “modes”. The generic element of X is xi jk giving the score



of observation unit i (i = 1, . . . , I) on variable j ( j = 1, . . . ,J) at occasion k
(k = 1, . . . ,K). Thus, there are three ways or indices, one for each mode. The
array X can be seen as a collection of standard matrices of order (I × J), one
for every occasion.

It is often convenient to summarize X to unravel the relevant information
hidden in the data. To this purpose, suitable extensions of Principal Compo-
nent Analysis for arrays should be considered. One of the most famous models
is the Tucker3 one (Tucker, 1966). The Tucker3 model synthesizes X by ex-
tracting P (< I), Q (< J) and R (< K) components for the observation units,
variables and occasions, respectively, thus allowing different levels of com-
plexity for the three modes. Let Xa be the matrix of order (I × JK) obtained
by juxtaposing next to each other the standard matrices pertaining to every
occasion. The Tucker3 model can be formalized as

Xa = AGa (C⊗B)T +Ea, (1)

where A of order (I ×P), B of order (J ×Q) and C of order (K ×R) are the
component score matrices for the observation units, the variables and the occa-
sions, respectively. Therefore, each mode is summarized by the corresponding
set of components. The triple interactions among such components are mea-
sured by the three-way array G of order (P×Q×R) called core. Finally, Ea
is the error matrix of order (I × JK) and the symbol ⊗ denotes the Kronecker
product. Estimation of the model parameters is carried out in the least square
sense by

min
A,B,C,G

||Ea||2, (2)

being || · || the Frobenius norm of matrices. An alternating least squares algo-
rithm can be used. It can be shown that the obtained solution is not identifiable.
In fact, all component matrices as well as the core array can be rotated. The
non-identifiability can be exploited in order to rotate the solution to a simple
structure. Given P, Q and R, we can assess the fit percentage of the Tucker3
model as (

1− ||Ea||2

||Xa||2

)
100. (3)

The closer to 100, the better the fit of the Tucker3 model. The optimal numbers
of components P, Q and R can be found by balancing fit and parsimony, bear-
ing in mind that interpretability is of relevant importance. For further details
on the Tucker3 model and related multi-way models, the interested reader may
refer to (Kroonenberg, 2008).



3 Results

The analyzed data come from the Human Cause-of-Death Database (HCD) and
refer to the mortality rates distinguished by causes of death, age classes and co-
horts registered in the United States of America. In particular, we consider the
mortality rates of I = 7 causes of death (Infectious diseases, Neoplasms, Car-
diovascular diseases, Respiratory diseases, Digestive diseases, External causes
of death, Other causes of death) distinguished in J = 7 five-year age classes
from 60 to 90 years for cohorts of people born in K = 10 years from 1919 to
1928. In order to deal with fully crossed data, i.e. all observation units have
scores on all variables on all occasions, such mortality rates are collected for
the years 1979–2018. Letting mF

i jk and mM
i jk be the mortality rates of the cause

of death i at age class j for cohort k for females and males, respectively, the
generic element of the three-way gender gap data array X is

xi jk =
mM

i jk

mF
i jk

, (4)

expressing to what extent the mortality rate for a certain cause of death of a
given age and belonging to a specific cohort of males differs from the corre-
sponding rate for females.

To assess whether and how gender differences in mortality are related to
causes of death, ages and cohorts, the Tucker3 model with P=Q= 2 and R= 1
components is used. To motivate this choice, we observe that the fit percentage
is rather high (91.60%), despite the low total number of components (P+Q+
R = 5), and the solution is well interpretable. In this respect, simplicity is
achieved by transforming Ga to the identity matrix and applying the varimax
(Kaiser, 1958) rotation to B compensating it in A. In this way, the components
for the causes of death and those for the age classes are related one-to-one.

The component matrix A for the causes of death is displayed in Figure 1.
The component matrix B for the age classes (not reported here) distinguishes
the younger ages (from 60 to 70) with large positive first component scores and
the older ages (from 75 to 90) with large positive second component scores.
Taking into account that the component scores for the cohorts are all positive
and decreasing passing from cohort 1919 to cohort 1928, the main findings are
that the gender gap for ages 60–70 increases in connection with Cardiovascular
diseases and External causes and decreases with Infectious diseases and Other
causes. This especially holds for the oldest cohorts. Conversely, for ages 75–
90, the gender gap for Neoplasms and Respiratory diseases is high, whilst
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Figure 1. Component scores for the causes of death.

the opposite comment holds for Digestive diseases. Further results will be
presented during the conference.
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