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ABSTRACT: The demand for detecting food adulteration has recently grown, due
to its economic and health implications. Infrared spectroscopy provides an efficient
method of collecting data for use in food authenticity analyses. Statistical methods are
routinely employed to analyze spectroscopy data in order to effectively detect adul-
terants in different food items and ensure food authenticity. This work presents a
novel partial membership model for mid-infrared spectral data. Our approach not
only detects the level of adulteration but also provides information on the spectral re-
gions most affected by the adulterant. These insights can be used in combination with
subject-matter expertise to characterize the chemical impact of the adulteration.
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1 Introduction

Expensive foods are often subject to fraud and food adulteration, with some of
the original components being removed or replaced by cheaper alternatives, to
lower their prices or to increase their bulk. On one hand, this can represent an
economic problem for food producers. On the other hand, it might also lead to
health issues for the consumers. Therefore, food authenticity studies, which
aim to determine if a sample has been adulterated or not, are increasingly
important. In this work, we examine Fourier transform mid-infrared (MIR)
spectroscopy data, which have been previously used effectively to tackle the
aforementioned problem. To the task, we propose a novel partial membership
model for spectroscopy data. The model introduces a more sophisticated au-
thentication tool, capable of not only identifying the presence of potential adul-
terants in food, but also of determining the percentage of contamination. The
proposed model also enables the identification of which wavelengths are more



impacted by the adulterant, constituting a starting point for further chemical
analysis. In Section 2, we introduce this new model and outline the adopted
estimation approach. Section 3 reports an application to spectrometry data of
Irish honey samples.

2 Model definition and estimation

Individual-level mixture models generalize standard model-based clustering by
encompassing situations where units can belong to multiple groups simultane-
ously, with varying degrees of membership. This idea has been developed
in two directions, namely mixed membership and partial membership models
(PMM), with the latter being the focus of this work; see Airoldi et al. , 2014 for
a discussion. Let Y = {y1, . . . ,yn} be the observed data. When yi ∈Rp, a mul-
tivariate Gaussian distribution is often assumed for the K component densities.
Therefore, according to PMM, yi is conditionally distributed as

(yi|gi,Θ)∼ Np
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where Θ = {µk,Σk}K
k=1 denotes mixture component means and covariance ma-

trices, while gi = (gi1, . . . ,giK) is the partial membership vector for the i-th
observation with gik ∈ [0,1], for k = 1, . . . ,K, and ∑k gik = 1. For food authen-
tication purposes, we consider K = 2, with the two components corresponding
to the pure food item and the adulterant, respectively. Moreover, we assume
that the adulterant has an additive and wavelength-specific effect. As such, we
have that

µ1 = µpure = (µpure
1 , . . . ,µpure

p )

µ2 = µad = (µpure
1 +δ1, . . . ,µpure

p +δp)

where δ j, for j = 1, . . . , p, represents the mean-shift induced by the adulterant
on the j-th wavelength. Pairing this specification with shrinkage or penaliza-
tion strategies for δ j’s can lead to the detection of the spectral regions most
influenced by the adulterant. Assuming Σ1 = Σ2 = Σ, model (1) reads as

(yi|gi,Θ)∼ Np (µpure +gi2δ,Σ) (2)

where gi2 is the percentage of adulterant in the i-th sample and δ= (δ1, . . . ,δp).
When dealing with spectroscopy data, the high number of variables can jeop-
ardize the practical usefulness of model (2). For this reason, simplifying as-
sumptions would consider a factor analytic or a diagonal structure for Σ.



Two alternative ways to estimate model (2) are explored. The first, heuris-
tic, estimation procedure can be used to obtain a naive and fast first model
evaluation. More specifically, it aims to maximize iteratively the following
quantity

SS f =
n

∑
i=1

(yi−µpure−gi2δ)2

with respect to µpure,δ and gi2. As it is, this procedure does not account for the
correlation structure among wavelengths and does not induce shrinkage on δ.
Interestingly, it can be used to provide initial values for a Bayesian estimation
procedure adopting a Dirichlet prior distribution for the membership vectors
gi, i = 1, . . . ,n while, for the δ j’s, j = 1, . . . , p, an horseshoe prior (Carvalho
et al. , 2010) is employed, thus imposing sparsity on the mean-shifts. Lastly,
standard conjugate priors are assumed for µpure, for the diagonal entries of Σ,
or for Λ and Ψ, if a factor analytic structure is considered. The model is es-
timated via MCMC algorithm, by means of the NIMBLE software. Note that
some degree of supervision can be introduced in the estimation. In particu-
lar, for some spectra, gi2 can be assumed known, since it is often possible to
augment the observed data with experimental data with a controlled amount
of adulteration. Unreported analyses showed the beneficial impact of small
amount of supervision.

3 Application to honey data

Our proposal is tested on MIR spectral data comprising samples from pure
honey and samples contaminated with different adulterants (Kelly et al. , 2006).
The data have n = 410 spectra, nH = 290 from pure honey and nB = 120 adul-
terated with beet sucrose in different percentages (10%, 20% and 30%). Prior
to running the analysis, a data aggregation step has been performed to reduce
the overall computational cost. Consequently, the original p = 285 wave-
lengths have been reduced to p∗ = 57 aggregated ones. Some supervision has
been imposed, assuming prior knowledge of the adulteration level for 40 spec-
tra. A diagonal structure for Σ has been considered and the hyperparameters
of the horseshoe prior have been selected following suggestions from Piironen
& Vehtari, 2017. An excerpt of the results is reported in Figure 1. Here, it is
shown how the proposed method is able to precisely estimate the spectrum for
the most adulterated samples, with the 95% credible interval always contain-
ing the true observed values. A closer inspection for the estimated δ j’s shows
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Figure 1. In black the estimated µpure. Dashed blue line depicts the observed average
spectrum for the most adulterated samples, while the gold shaded area represents the
estimated 95% credible interval for the same quantity.

how beet sucrose seems to have a non negligible impact only on 10 aggregated
wavelengths in the region from 2377.46 cm−1 to 3166.19 cm−1. These re-
sults, if paired with subject-matter knowledge, can shed light on the chemical
mechanism underlying the adulteration process.
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